To research and develop potential phosphors for ultraviolet-based white light emitting diodes, a novel red emission phosphate phosphor CaLiBiEu(PO) was synthesized and investigated in the full range of 0 ≤x≤ 1. The phase purity and crystal structure of the solid solution phosphors were investigated in detail by employing X-ray diffractometer structure refinement, scanning electron microscopy and energy dispersive spectrometry. The crystal structure information was confirmed and the structure as well as the doping concentration dependent characteristic photoluminescence properties were discussed in detail. The results indicated that high Eu doping content x could be realized in CaLiBiEu(PO) solid solutions even when x = 1. The luminescence performance revealed that CaLiBiEu(PO) phosphors could emit intense red emission under 394 nm excitation with excellent CIE chromaticity coordinates and high color purity. The concentration dependent emission decay behavior at room temperature and the temperature dependent decay behavior were studied to investigate the luminescent dynamics. The abnormal thermal quenching behavior was investigated via the temperature dependent emission. The related mechanism was discussed through thermoluminescence analysis, charge compensation contrast test and the cooling emission curve measurement, and the thermal activation energy was studied. The above results indicated that the CaLiBiEu(PO) could be a promising red-emitting phosphor for white light emitting diodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8dt04047h | DOI Listing |
Bioconjug Chem
January 2025
Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods.
View Article and Find Full Text PDFOptical properties of InGaN/GaN red quantum well(QW) and their microcavities were studied and compared under optical pumping. Incidence of the excitation laser from the p-side was employed for both structures in order to acquire better emission characteristics. The QW structure was grown on sapphire substrate by metalorganic vapor-phase epitaxy(MOVPE) with a blue pre-layer QW.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun, 130033, China.
Round-trip energy transfer (RTET) in the popular Er/Yb upconversion (UC) system is a newly discovered mechanism for the red emission of Er through Yb as an intermediate ion. However, the importance of the RTET still remains a question. Here, we show in cubic YO that the new mechanism defeats conventional ones and dominates the red emission in both UC and down-shifting (DS) luminescence for a wide concentration range of Yb.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
Background: The gradual extrusion of water-soluble intracellular components (such as proteins) from microalgae after pulsed electric field (PEF) treatment is a well-documented phenomenon. This could be utilized in biorefinery applications with lipid extraction taking place after such an 'incubation' period, i.e.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
A ratiometric fluorescent nanoprobe (CDs-Rho), synthesized through the simple covalent amide linkage between carbon dots (CDs) and pH-sensitive rhodamine dye (Rho), was designed for the precise sensing and imaging of extremely alkaline environments. The sensing mechanism involves the opposite pH-dependent fluorescence changes in CDs and Rho, respectively, coupled with pH-regulated FRET efficiency from CDs to Rho. The nanoprobe features a wide pH response window from pH 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!