Graded Protein/PEG Nanopattern Arrays: Well-Defined Gradient Biomaterials to Induce Basic Cellular Behaviors.

ACS Appl Mater Interfaces

Liaoning Province Key Laboratory of Oral Disease, School of Stomatology , China Medical University, Shenyang 110002 , P. R. China.

Published: January 2019

Gradient biomaterials have shown enormous potential in high-throughput screening of biomaterials and material-induced cell migration. To make the screening process more rapid and precise, improving the regularity of morphological structure and chemical modification on gradient biomaterials have attracted much attention. In this paper, we present a novel fabrication strategy to introduce ordered nanopattern arrays into gradient biomaterials, through combining surface-initiated atom transfer radical polymerization and inclined reactive-ion etching based on colloidal lithography. Graded protein/poly(ethylene glycol) (PEG) nanopattern arrays on a quartz substrate were fabricated and applied to affect the behaviors of cells. Owing to the continuously changed ratio of two different components, the corresponding cell adhesion density along the substrate showed obvious graded distribution after culturing for 24 h. Meanwhile, the cytoskeleton showed obvious polarization after culturing for 7 days, which is parallel with the direction of gradient. Additionally, oriented migration was generated when mouse MC3T3-E1 cells were cultured on the graded protein/PEG nanopattern arrays. On the basis of the ordered and well-defined nanopatterns, the correlation between the extracellular matrix and corresponding expressions generated by different stimuli can be investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b16547DOI Listing

Publication Analysis

Top Keywords

nanopattern arrays
16
gradient biomaterials
16
graded protein/peg
8
protein/peg nanopattern
8
gradient
5
biomaterials
5
graded
4
nanopattern
4
arrays
4
arrays well-defined
4

Similar Publications

Advances in nanotechnology are able to open up new prospects for catalysis, particularly through the development of catalytic systems featuring precisely controlled size and distribution of metal nanoparticles. In this study, we prepared a model catalytic system, where monodisperse Pt nanoparticles, approximately 8 nm in size, were uniformly distributed onto CeO and SiO/Si substrates block copolymer (BCP) nanopatterning. To address the validity of these catalysts, we conducted a case study on CO oxidation in a continuous flow reactor, investigated the reaction kinetics, and compared our observations with those reported in the literature.

View Article and Find Full Text PDF

Nano-patterned magnetic materials have opened new venues for the investigation of strongly correlated phenomena including artificial spin-ice systems, geometric frustration, and magnetic monopoles, for technologically important applications such as reconfigurable ferromagnetism. With the advent of atomically thin 2D van der Waals (vdW) magnets, a pertinent question is whether such compounds could make their way into this realm where interactions can be tailored so that unconventional states of matter can be assessed. Here, it is shown that square islands of CrGeTe vdW ferromagnets distributed in a grid manifest antiferromagnetic correlations, essential to enable frustration resulting in an artificial spin-ice.

View Article and Find Full Text PDF

Controlled Formation of Porous Cross-Bar Arrays Using Nano-Transfer Printing.

Materials (Basel)

November 2024

Department of Materials Science and Engineering, Pukyong National University (PKNU), Busan 48513, Republic of Korea.

Nano-transfer printing (nTP) has emerged as an effective method for fabricating three-dimensional (3D) nanopatterns on both flat and non-planar substrates. However, most transfer-printed 3D patterns tend to exhibit non-discrete and/or non-porous structures, limiting their application in high-precision nanofabrication. In this study, we introduce a simple and versatile approach to produce highly ordered, porous 3D cross-bar arrays through precise control of the nTP process parameters.

View Article and Find Full Text PDF

Aluminium surface work hardening enables multi-scale 3D lithography.

Nat Mater

January 2025

Research Centre for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, China.

Multi-scale structures are ubiquitous in biological systems. However, manufacturing man-made structures with controllable features spanning multiple length scales, particularly down to nanoscale features, is very challenging, which seriously impacts their collective properties. Here we introduce an aluminium-based three-dimensional lithography that combines sequential nano-micro-macro-imprinting and anodization of multi-scale anodic aluminium oxide templates to manufacture well-defined multi-scale structures, using various materials.

View Article and Find Full Text PDF

Gallium-based liquid metals (LMs) are widely used for stretchable and reconfigurable electronics thanks to their fluidic nature and excellent conductivity. These LMs possess attractive optical properties for photonics applications as well. However, due to the high surface tension of the LMs, it is challenging to form LM nanostructures with arbitrary shapes using conventional nanofabrication techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!