Tuning of ligand structures through controlled variation of ring number in fused-ring aromatic moiety appended to antipyrine allows detection of 7.8 × 10  M pyrene via aggregation-induced emission (AIE) associated with 101-fold fluorescence enhancement. In one case, antipyrine unit is replaced by pyridine to derive bis-methylanthracenyl picolyl amine. The structures of four molecules have been confirmed by single crystal X-ray diffraction analysis. Among them, pyrene-antipyrine conjugate (L) undergoes pyrene triggered inhibition of photo-induced electron transfer (PET) leading to water-assisted AIE.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.2771DOI Listing

Publication Analysis

Top Keywords

aggregation-induced emission
8
tuning ligand
8
exploring aggregation-induced
4
emission tuning
4
ligand structure
4
structure picomolar
4
picomolar detection
4
detection pyrene
4
pyrene tuning
4
ligand structures
4

Similar Publications

Ln-MOFs, composed of lanthanide ions and functional organic ligands, are porous materials with tunable structures and unique luminescent properties. However, the interplay between ligand AIE properties and the framework's "antenna effect" on MOF morphology is understudied. Here, Tb-D-Cam-TPTB was synthesized via solvothermal method using TPTB (persulfurated arene) as the primary ligand, D-Cam as the auxiliary ligand, and Tb3+ as the metal ion.

View Article and Find Full Text PDF

Intramolecular Repulsive Interactions Enable High Efficiency of NIR-II Aggregation-Induced Emission Luminogens for High-Contrast Glioblastoma Imaging.

ACS Nano

January 2025

Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.

Strategies to acquire high-efficiency luminogens that emit in the second near-infrared (NIR-II, 1000-1700 nm) range are still rare due to the impediment of the energy gap law. Herein, a feasible strategy is pioneered by installing large-volume encumbrances in a confined space to intensify the repulsive interactions arising from overlapping electron densities. The experimental results, including smaller coordinate displacement, reduced reorganization energy, and suppressed internal conversion, demonstrate that the repulsive interactions assist in the inhibition of radiationless deactivation.

View Article and Find Full Text PDF

Optimal Method to Realize Quantitative Detection of 1D and 2D Nanoassemblies Based on AIE-Active Bolaamphiphilic Molecules.

Langmuir

January 2025

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.

Controllable transformation between the bolaamphiphilic molecule assemblies with different morphological nanostructures represents an exciting new direction for materials. However, there are still significant challenges for the quantitative detection and real-time monitoring of a controllable nanoself-assembly process due to insufficient measuring methods. Herein, we propose a new and effective fluorescence technology for realizing quantitative detection of a controllable conversion process of one-dimensional (1D)/two-dimensional (2D) nanoassemblies by introducing AIEgens as the fluorescence signal part.

View Article and Find Full Text PDF

Lateral flow analysis test strips based on aggregation-induced emission technique: Principle, design, and application.

Biosens Bioelectron

December 2024

Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China; Juxintang (Chengdu) Biotechnology Co., Ltd., Chengdu, 641400, China. Electronic address:

This review examines the potential of aggregation-induced luminescence (AIE) materials in lateral flow assays (LFA) to enhance the sensitivity and specificity of a range of assay applications. LFA is a straightforward and effective paper-based platform for the rapid detection of target analytes in mixtures. Its simple design, low cost, and ease of operation are among the most attractive advantages of LFA.

View Article and Find Full Text PDF

Aggregation-Induced Emission Luminogens Realizing High-Contrast Bioimaging.

ACS Nano

January 2025

Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China.

A revolutionary transformation in biomedical imaging is unfolding with the advent of aggregation-induced emission luminogens (AIEgens). These cutting-edge molecules not only overcome the limitations of traditional fluorescent probes but also improve the boundaries of high-contrast imaging. Unlike conventional fluorophores suffering from aggregation-caused quenching, AIEgens exhibit enhanced luminescence when aggregated, enabling superior imaging performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!