Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Computational chemical analysis of Ru(II)-Pheox-catalyzed highly enantioselective intramolecular cyclopropanation reactions was performed using density functional theory (DFT). In this study, cyclopropane ring-fused γ-lactones, which are 5.8 kcal/mol more stable than the corresponding minor enantiomer, are obtained as the major product. The results of the calculations suggest that the enantioselectivity of the Ru(II)-Pheox-catalyzed intramolecular cyclopropanation reaction is affected by the energy differences between the starting structures 5l and 5i. The reaction pathway was found to be a stepwise mechanism that proceeds through the formation of a metallacyclobutane intermediate. This is the first example of a computational chemical analysis of enantioselective control in an intramolecular carbene-transfer reaction using C -symmetric catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chir.23033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!