Desiccation tolerant (DT) plants withstand complete cellular dehydration, reaching relative water contents (RWC) below 30% in their photosynthetic tissues. Desiccation sensitive (DS) plants exhibit different degrees of dehydration tolerance (DHT), never surviving water loss >70%. To date, no procedure for the quantitative evaluation of DHT extent exists that is able to discriminate DS species with differing degrees of DHT from truly DT plants. We developed a simple, feasible and portable protocol to differentiate between DT and different degrees of DHT in the photosynthetic tissues of seed plants and between fast desiccation (< 24 h) tolerant (FDT) and sensitive (FDS) bryophytes. The protocol is based on (1) controlled desiccation inside Falcon tubes equilibrated at three different relative humidities that, consequently, induce three different speeds and extents of dehydration and (2) an evaluation of the average percentage of maximal photochemical efficiency of PSII (F /fm) recovery after rehydration. Applying the method to 10 bryophytes and 28 tracheophytes from various locations, we found that (1) imbibition of absorbent material with concentrated salt-solutions inside the tubes provides stable relative humidity and avoids direct contact with samples; (2) for 50 ml capacity tubes, the optimal plant amount is 50-200 mg fresh weight; (3) the method is useful in remote locations due to minimal instrumental requirements; and (4) a threshold of 30% recovery of the initial F /fm upon reaching RWC ≤ 30% correctly categorises DT species, with three exceptions: two poikilochlorophyllous species and one gymnosperm. The protocol provides a semi-quantitative expression of DHT that facilitates comparisons of species with different morpho-physiological traits and/or ecological attributes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.12890DOI Listing

Publication Analysis

Top Keywords

photosynthetic tissues
12
dehydration tolerance
8
degrees dht
8
plants
5
field portable
4
portable method
4
method semi-quantitative
4
semi-quantitative estimation
4
estimation dehydration
4
tolerance photosynthetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!