Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The article demonstrates the crystalline silk nano-discs (CSNs), with well-controlled morphology, which upon magnetization, yields magnetic crystalline silk nano-discs, making both prominent alternatives for replacing metal templates such as gold, silver, and so on in therapeutics and implants. The isolated β-sheet-rich discotic CSNs have ~50 nm diameter, high crystallinity (> 90%), and are insoluble but provide good dispersibility and stability in aqueous solutions. The melt blending-cum-electrospinning of functionalized CSN with poly(lactic acid) results in biocompatible nanofiber-based scaffolds having in vitro cell cytocompatibility with improved cell adhesion and proliferation. The assessment of release behavior of curcumin, a naturally occurring anticancer drug, shows sustained release over 25 days exhibiting effective cytotoxicity against human cervical cancer cells. Further, combined effect of curcumin and hyperthermia reduced the cell growth by ~63%. Alignment of CSN-derived magnetic nanoparticles due to effective fiber drawing process during electrospinning could improve cytocompatibility against BHK-21 cells, and therefore efficacy for cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bip.23231 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!