A regioselective synthetic protocol is developed via tetrabromination of perylenemonoimide (PMI) which leads to a series of PMI derivatives. The push-pull characteristics of these derivatives are established by spectroscopic and theoretical investigations. Finally, the semiconducting properties of the PMI dyes are utilized for the development of a switchable memory device.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cc08662aDOI Listing

Publication Analysis

Top Keywords

switchable memory
8
synthesis highly-soluble
4
highly-soluble push-pull
4
push-pull perylenemonoimide
4
perylenemonoimide derivatives
4
derivatives regioselective
4
regioselective peri-functionalization
4
peri-functionalization switchable
4
memory applications
4
applications regioselective
4

Similar Publications

Thermal- and Rate-Regulated Fast Switchable Adhesion within Glass Transition Zone of an Epoxy Polymer.

Langmuir

January 2025

Institute of Advanced Manufacturing Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou 213164, People's Republic of China.

Thermoresponsive shape memory polymer (SMP) adhesives have demonstrated a high adhesion strength and large switching ratios on different substrates. However, a long response time to switch adhesion on or off is generally encountered. This study provides a fast adhesion switching method based on the temperature and rate dependence of adhesion within the glass-transition zone of an epoxy polymer.

View Article and Find Full Text PDF

Versatile adhesive skin enhances robotic interactions with the environment.

Sci Adv

January 2025

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Electronic skins endow robots with sensory functions but often lack the multifunctionality of natural skin, such as switchable adhesion. Current smart adhesives based on elastomers have limited adhesion tunability, which hinders their effective use for both carrying heavy loads and performing dexterous manipulations. Here, we report a versatile, one-size-fits-all robotic adhesive skin using shape memory polymers with tunable rubber-to-glass phase transitions.

View Article and Find Full Text PDF

Large-scale high uniform optoelectronic synapses array for artificial visual neural network.

Microsyst Nanoeng

January 2025

State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Ministry of Education, 100081, Beijing, China.

Recently, the biologically inspired intelligent artificial visual neural system has aroused enormous interest. However, there are still significant obstacles in pursuing large-scale parallel and efficient visual memory and recognition. In this study, we demonstrate a 28 × 28 synaptic devices array for the artificial visual neuromorphic system, within the size of 0.

View Article and Find Full Text PDF

Emergence of ferroelectricity in Sn-based perovskite semiconductor films by iminazole molecular reconfiguration.

Nat Commun

January 2025

State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.

Ferroelectric semiconductors have the advantages of switchable polarization ferroelectric field regulation and semiconductor transport characteristics, which are highly promising in ferroelectric transistors and nonvolatile memory. However, it is difficult to prepare a Sn-based perovskite film with both robust ferroelectric and semiconductor properties. Here, by doping with 2-methylbenzimidazole, Sn-based perovskite [93.

View Article and Find Full Text PDF

Structurally Transformable and Reconfigurable Hydrogel-Based Mechanical Metamaterials and Their Application in Biomedical Stents.

ACS Appl Mater Interfaces

January 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

Mechanical metamaterials exhibit several unusual mechanical properties, such as a negative Poisson's ratio, which impart additional capabilities to materials. Recently, hydrogels have emerged as exceptional candidates for fabricating mechanical metamaterials that offer enhanced functionality and expanded applications due to their unique responsive characteristics. However, the adaptability of these metamaterials remains constrained and underutilized, as they lack integration of the hydrogels' soft and responsive characteristics with the metamaterial design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!