There is an increasing consensus that microbial communities have an important role in mediating ecosystem processes. Trait-based ecology predicts that the impact of the microbial communities on ecosystem functions will be mediated by the expression of their traits at community level. The link between the response of microbial community traits to environmental conditions and its effect on plant functioning is a gap in most current microbial ecology studies. In this study, we analyzed functional traits of ectomycorrhizal fungal species in order to understand the importance of their community assembly for the soil-plant relationships in holm oak trees ( subsp. ) growing in a gradient of exposure to anthropogenic trace element (TE) contamination after a metalliferous tailings spill. Particularly, we addressed how the ectomycorrhizal composition and morphological traits at community level mediate plant response to TE contamination and its capacity for phytoremediation. Ectomycorrhizal fungal taxonomy and functional diversity explained a high proportion of variance of tree functional traits, both in roots and leaves. Trees where ectomycorrhizal fungal communities were dominated by the abundant taxa and showed a conservative root economics spectrum, while trees colonized by rare taxa presented a resource acquisition strategy. Conservative roots presented ectomycorrhizal functional traits characterized by high rhizomorphs formation and low melanization which may be driven by resource limitation. Soil-to-root transfer of TEs was explained substantially by the ectomycorrhizal fungal species composition, with the highest transfer found in trees whose roots were colonized by . Leaf phosphorus was related to ectomycorrhizal species composition, specifically higher leaf phosphorus was related to the root colonization by . These findings support that ectomycorrhizal fungal community composition and their functional traits mediate plant performance in metal-contaminated soils, and have a high influence on plant capacity for phytoremediation of contaminants. The study also corroborates the overall effects of ectomycorrhizal fungi on ecosystem functioning through their mediation over the plant economics spectrum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6255936PMC
http://dx.doi.org/10.3389/fpls.2018.01682DOI Listing

Publication Analysis

Top Keywords

ectomycorrhizal fungal
24
functional traits
20
ectomycorrhizal
10
fungal communities
8
traits
8
traits mediate
8
trace element
8
microbial communities
8
traits community
8
community level
8

Similar Publications

Insights into the Biotic Factors Shaping Ectomycorrhizal Associations.

Biology (Basel)

December 2024

Lumbricidae, Improving Soil Productivity and Environment Unit (LAPSE), Higher Normal School (ENS), Mohammed V University in Rabat, Rabat P.O. Box 554, Morocco.

Ectomycorrhizal (EM) associations are essential symbiotic relationships that contribute significantly to the health and functioning of forest ecosystems. This review examines the biotic factors that influence EM associations, focusing on plant and fungal diversity, host specificity, and microbial interactions. Firstly, the diversity of host plants and ectomycorrhizal fungi (EMF) is discussed, highlighting how the richness of these organisms affects the formation and success of EM symbioses.

View Article and Find Full Text PDF

Climate Change Drives Changes in the Size and Composition of Fungal Communities Along the Soil-Seedling Continuum of Schima superba.

Mol Ecol

January 2025

ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.

Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil-plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing.

View Article and Find Full Text PDF

Background: Understanding the diversity and distribution of fungal communities at a regional scale is important since fungi play a crucial role in ecosystem functioning. Our study used environmental metagenomics to determine fungal communities in mountainous forest soils in the central highlands of Mexico.

Methods: We used four different bioinformatic workflows to profile fungal assemblages, .

View Article and Find Full Text PDF

Afforestation projects on saline land, using Eucalyptus trees and ectomycorrhizal fungi, are crucial for restoring affected areas and promoting ecological and economic benefits, particularly in saline-affected areas. This study was conducted to isolate Pisolithus sp. and estimate its potential to improve the growth performance of Eucalyptus globulus seedlings under salt-stress conditions.

View Article and Find Full Text PDF

Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!