The regulatory role of most dual specific phosphatases during T cell activation remains unknown. Here, we have studied the expression and function of phosphatases of regenerating liver (PRLs: PRL-1, PRL-2, and PRL-3) during T cell activation, as well as, the dynamic delivery of PRL-1 to the Immunological Synapse (IS). We found that T cell activation downregulates the expression of PRL-2, resulting in an increased PRL-1/PRL-2 ratio. PRL-1 redistributed at the IS in two stages: Initially, it was transiently accumulated at scanning membranes enriched in CD3 and actin, and at later times, it was delivered at the contact site from pericentriolar, CD3ζ-containing, vesicles. Once at the established IS, PRL-1 distributed to LFA-1 and CD3ε sites. Remarkably, PRL-1 was found to regulate actin dynamics during IS assembly and the secretion of IL-2. Moreover, pharmacological inhibition of the catalytic activity of the three PRLs reduced the secretion of IL-2. These results provide evidence indicating a regulatory role of PRL-1 during IS assembly and highlight the involvement of PRLs in immune responses by mature T cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6255827 | PMC |
http://dx.doi.org/10.3389/fimmu.2018.02655 | DOI Listing |
J Clin Invest
January 2025
Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, United States of America.
Colorectal cancer (CRC) remains a leading cause of cancer death due to metastatic spread. LIN28B is overexpressed in 30% of CRCs and promotes metastasis, yet its mechanisms remain unclear. In this study, we genetically modified CRC cell lines to overexpress LIN28B, resulting in enhanced PI3K/AKT pathway activation and liver metastasis in mice.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.
Ferroptosis is a unique cell death mode that relies on iron and lipid peroxidation (LPO) and is extensively utilized to treat drug-resistant tumor. However, like the other antitumor model, requirement of oxygen limited its application in treating the malignant tumors in anaerobic environments, just as photodynamic therapy, a very promising anticancer therapy. Here, we show that an iridium(III) complex (Ir-dF), which was often used in proton-coupled electron transport (PCET) process, can induce efficient cell death upon photo irradiation, which can be effectively protected by the typical ferroptosis inhibitor Fer-1 but not by the classic iron chelating agents and ROS scavengers.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!