Snake venoms represent an enriched system for investigating the evolutionary processes that lead to complex and dynamic trophic adaptations. It has long been hypothesized that natural selection may drive geographic variation in venom composition, yet previous studies have lacked the population genetic context to examine these patterns. We leverage range-wide sampling of Mojave Rattlesnakes (Crotalus scutulatus) and use a combination of venom, morphological, phylogenetic, population genetic, and environmental data to characterize the striking dichotomy of neurotoxic (Type A) and hemorrhagic (Type B) venoms throughout the range of this species. We find that three of the four previously identified major lineages within C. scutulatus possess a combination of Type A, Type B, and a 'mixed' Type A + B venom phenotypes, and that fixation of the two main venom phenotypes occurs on a more fine geographic scale than previously appreciated. We also find that Type A + B individuals occur in regions of inferred introgression, and that this mixed phenotype is comparatively rare. Our results support strong directional local selection leading to fixation of alternative venom phenotypes on a fine geographic scale, and are inconsistent with balancing selection to maintain both phenotypes within a single population. Our comparisons to biotic and abiotic factors further indicate that venom phenotype correlates with fang morphology and climatic variables. We hypothesize that links to fang morphology may be indicative of co-evolution of venom and other trophic adaptations, and that climatic variables may be linked to prey distributions and/or physiology, which in turn impose selection pressures on snake venoms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279745 | PMC |
http://dx.doi.org/10.1038/s41598-018-35810-9 | DOI Listing |
BMC Genomics
December 2024
Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
Background: Animal venom systems are considered as valuable model for investigating the molecular mechanisms underlying phenotypic evolution. Stonefish are the most venomous and dangerous fish because of severe human envenomation and occasionally fatalities, whereas the genomic background of their venom has not been fully explored compared with that in other venomous animals.
Results: In this study, we followed modern venomic pipelines to decode the Synanceia verrucosa venom components.
Blood Coagul Fibrinolysis
December 2024
Department of Biological Sciences, University of North Texas, Denton, Texas, USA.
Aim: This study aimed to create an f9l mutant zebrafish using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) and characterize its coagulation properties to investigate its functional similarity to human FX and explore the potential synergy between f9l and f10.
Methods: Three gRNAs targeting exon 8 encoded by the catalytic domain of the f9l gene were injected into 300 single-cell zebrafish embryos using CRISPR/Cas9 technology. DNA from the resulting adults was extracted from tail tips, and PCR was used to detect indels.
Toxicon
January 2025
Department of Biology, University of South Alabama, Mobile, AL 36688, USA. Electronic address:
Intraspecific phenotypic variation can be used as a window into the ecological differences among individuals of a species and lead to a better understanding of adaptive evolution. Adaptive traits, such as venom, that play an important ecological role for a species are useful models for understanding the sources of intraspecific variation. Intraspecific studies on front-fanged venomous snakes have offered deeper insights into the diverse mechanisms and adaptations that support the effectiveness of venom across species.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Center of Biotechnology of Azores (CBA), University of the Azores, 9500-321 Ponta Delgada, Portugal.
, commonly known as the Portuguese Man o' War, is one of the most venomous members of the Cnidaria yet is poorly understood. This article investigates the toxicity of venom by assessing its behavioral and toxicological effects on . The venom administered orally revealed dose- and time-dependent mortality, with an LD50 of 67.
View Article and Find Full Text PDFToxins (Basel)
October 2024
Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China.
Spider venoms are emerging as a rich source of bioactive peptide toxins with therapeutic potential. Lynx spiders of the genus are small, cursorial hunters that employ complex venom to subdue arthropod prey. However, extracting crude venom from these diminutive arachnids poses significant challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!