Sensitivity and Robustness of Spatially Dependent Thrombin Generation and Fibrin Clot Propagation.

Biophys J

Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow, Russia; Department of Biophysics and Systems Biology, National Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

Published: December 2018

Blood coagulation is a delicately regulated space- and time-dependent process that leads to the formation of fibrin clots preventing blood loss upon vascular injury. The sensitivity of the coagulation network was previously investigated without accounting for transport processes. To investigate its sensitivity to coagulation factor deficiencies in a spatial reaction-diffusion system, we combined an in vitro experimental design with a computational systems biology model. Clot formation in platelet-free plasma supplemented with phospholipids was activated with identical amounts of tissue factor (TF) either homogeneously distributed (concentration 5 pM, homogeneous model) or immobilized on the surface (surface density 100 pmole/m, spatially heterogeneous model). Fibrin clot growth and thrombin concentration dynamic in space were observed using video microscopy in plasma of healthy donors or patients with deficiencies in factors (F) II, FV, FVII, FVIII, FIX, FX, or FXI. In the spatially heterogeneous model, near-activator thrombin generation was decreased in FV-, FVII-, and FX-deficient plasma. In the homogeneous model, clotting was not registered in these samples. The simulation and experiment data showed that the coagulation threshold depended on the TF concentration. Our data indicate that the velocity of spatial clot propagation correlates linearly with the concentration of thrombin at the clot wave front but not with the overall thrombin wave amplitude. Spatial clot growth in normal plasma at early stages was neither reaction nor diffusion limited but became diffusion limited later. In contrast, clot growth was always diffusion limited in FV-, FVII-, and FX-deficient plasma and reaction limited in FVIII-, FIX-, and FXI-deficient plasma. We conclude that robustness of the spatially heterogeneous coagulation system was achieved because of the combination of 1) a local high TF surface density that overcomes activation thresholds, 2) diffusion control being shared between different active factors, and 3) an early saturated stimulus-response dependence of fibrin clot formation by thrombin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301986PMC
http://dx.doi.org/10.1016/j.bpj.2018.11.009DOI Listing

Publication Analysis

Top Keywords

fibrin clot
12
spatially heterogeneous
12
clot growth
12
diffusion limited
12
robustness spatially
8
thrombin generation
8
clot
8
clot propagation
8
sensitivity coagulation
8
clot formation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!