Reoptimized UNRES Potential for Protein Model Quality Assessment.

Genes (Basel)

Battelle Center for Mathematical Medicine, Nationwide Children's Hospital, Columbus, OH 43215, USA.

Published: December 2018

Ranking protein structure models is an elusive problem in bioinformatics. These models are evaluated on both the degree of similarity to the native structure and the folding pathway. Here, we simulated the use of the coarse-grained UNited RESidue (UNRES) force field as a tool to choose the best protein structure models for a given protein sequence among a pool of candidate models, using server data from the CASP11 experiment. Because the original UNRES was optimized for Molecular Dynamics simulations, we reoptimized UNRES using a deep feed-forward neural network, and we show that introducing additional descriptive features can produce better results. Overall, we found that the reoptimized UNRES performs better in selecting the best structures and tracking protein unwinding from its native state. We also found a relatively poor correlation between UNRES values and the model's Template Modeling Score (TMS). This is remedied by reoptimization. We discuss some cases where our reoptimization procedure is useful. The reoptimized version of UNRES (OUNRES) is available at http://mamiris.com and http://www.unres.pl.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6315818PMC
http://dx.doi.org/10.3390/genes9120601DOI Listing

Publication Analysis

Top Keywords

reoptimized unres
12
protein structure
8
structure models
8
unres
6
protein
5
reoptimized
4
unres potential
4
potential protein
4
protein model
4
model quality
4

Similar Publications

Ranking protein structure models is an elusive problem in bioinformatics. These models are evaluated on both the degree of similarity to the native structure and the folding pathway. Here, we simulated the use of the coarse-grained UNited RESidue (UNRES) force field as a tool to choose the best protein structure models for a given protein sequence among a pool of candidate models, using server data from the CASP11 experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!