To better understand the thermal decomposition and reaction process of a fluorine-containing powdery thermite, PTFE/Al/MnO₂, reactions at different temperatures were investigated by the TG/DSC-MS technique. The corresponding reaction products were characterized with XRD phase analysis. Another three thermite materials, i.e., PTFE/Al, Al/MnO₂, and PTFE/MnO₂, were also prepared for comparison. Results showed that PTFE behaved as both oxidizer and reducer in PTFE/Al/MnO₂ fluorinated thermite. The thermal decomposition and reaction process of as-fabricated ternary thermite could be divided into two stages-the mutual reaction between each of PTFE, Al, and MnO₂ and the subsequent reaction produced between Al and Mn₂O₃/Mn₃O₄/MnF₂. Compared with the three control systems, the specially designed ternary system possessed a shorter reaction time, a faster energy release rate, and a better heat release performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317308PMC
http://dx.doi.org/10.3390/ma11122451DOI Listing

Publication Analysis

Top Keywords

thermal decomposition
12
reaction process
12
ptfe/al/mno₂ fluorinated
8
fluorinated thermite
8
decomposition reaction
8
reaction
7
thermite
5
thermal
4
decomposition thermal
4
thermal reaction
4

Similar Publications

The corrugated <110> oriented layered metal halide perovskites (MHP) are gaining increased attention for a variety of properties including intrinsic white light emission. One prototypical candidate is 1-(3-aminopropyl)imidazole lead bromide, which was reported to crystallize as the <110> oriented perovskite (API)PbBr [API = 1-(3-aminopropyl)imidazole]. This work shows that under similar reaction conditions, the same components can instead form (API)PbBr, which has a "perovskitoid" structure.

View Article and Find Full Text PDF

Elucidating Thermal Decomposition Kinetic Mechanism of Charged Layered Oxide Cathode for Sodium-Ion Batteries.

Adv Mater

January 2025

Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.

The safety of the P2-type layered transition metal oxides (P2-NaTMO), a promising cathode material for sodium-ion batteries (SIBs), is a prerequisite for grid-scale energy storage systems. However, previous thermal runaway studies mainly focused on morphological changes resulting from gas production detection and thermogravimetric analysis, while the structural transition and chemical reactions underlying these processes are still unclear. Herein, a comprehensive methodology to unveil an interplay mechanism among phase structures, interfacial microcrack, and thermal stability of the charged P2-NaNiMnO (NNMO) and the P2-NaNiLiMnO (NNMO-Li) at elevated temperatures is established.

View Article and Find Full Text PDF

Expansion counteraction effect assisted vanadate with rich oxygen vacancies as a high cycling stability cathode for aqueous zinc-ion batteries.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering and School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In this study, a novel tunnel structure vanadate NaVO (NaVO) cathode for aqueous zinc ion batteries (AZIBs) is facilely fabricated by thermal decomposition of polyoxovanadate containing NH ions. The NaVO cathode is characterized by abundant oxygen vacancies and nanometer dimensions. These attributes can offer extra reaction sites and suppress structural collapse during circulation.

View Article and Find Full Text PDF

Universal kinetic description for the thermal dehydration of sodium carbonate monohydrate powder across different temperatures and water vapor pressures.

Phys Chem Chem Phys

January 2025

Department of Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan.

The thermal dehydration of sodium carbonate monohydrate (SC-MH) exhibits kinetic characteristics that are typical of the thermal decomposition of solids with a reversible nature. One of the characteristics is the physico-geometrical constraints of the reaction due to the heterogeneous reaction feature. Another factor is the considerable impact of the atmospheric and self-generated water vapor on the kinetics.

View Article and Find Full Text PDF

γ-l-Glutamyl-S-allyl-l-cysteine (GSAC) is renowned for its flavor-modifying effects and beneficial biological activities. However, the level of GSAC decreases significantly during the processing of black garlic, and the pathways and degradation products resulting from this decline remain unclear. To investigate the potential transformation mechanisms of GSAC in black garlic, simulation systems for thermal decomposition, Maillard reactions, and enzymatic hydrolysis were established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!