Nanostructured Bismuth Film Electrode for Detection of Progesterone.

Sensors (Basel)

Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.

Published: December 2018

Progesterone is an important hormone responsible, among others, for maintaining pregnancy via inhibition of uterus muscles activity; thus, following its concentration levels in pregnant women is of immense importance in the endeavor to prevent premature birth. In this work, the nanostructured bismuth film electrode (nsBiFE) was studied for detection of progesterone in neutral medium. Due to the ability to accumulate progesterone at the nsBiFE, the adsorptive cathodic stripping voltammetry was beneficially exploited. The nsBiFE was prepared on the surface of a glassy carbon supporting electrode and several parameters influencing the detection of progesterone were investigated. The nsBiFE exhibited superior electroanalytical characteristics in comparison to other bismuth-based electrodes and unmodified glassy carbon electrode together with satisfactory response toward low concentrations of progesterone, which are consistent with clinically significant levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308956PMC
http://dx.doi.org/10.3390/s18124233DOI Listing

Publication Analysis

Top Keywords

detection progesterone
12
nanostructured bismuth
8
bismuth film
8
film electrode
8
glassy carbon
8
progesterone
6
electrode
4
electrode detection
4
progesterone progesterone
4
progesterone hormone
4

Similar Publications

Toward At-Home and Wearable Monitoring of Female Hormones: Emerging Nanotechnologies and Clinical Prospects.

ACS Sens

January 2025

School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.

Steroid hormones, especially progesterone (P), estradiol (E), and testosterone (T), are key bioactive regulators in various female physiological processes, including growth and development, ovulation, and the reproductive cycle, as well as metabolism and mental health. As lipophilic molecules produced in sex glands, these steroid female hormones can be transported through blood vessels into various body fluids such as saliva, sweat, and urine. However, the ultralow concentration of steroid hormones down to picomolar (pM) level necessitates great demands for ultrasensitive but low-cost analytic tools to implement accurate, point-of-care or even continuous monitoring in a user-friendly fashion.

View Article and Find Full Text PDF

GnRH pulse generator activity in mouse models of polycystic ovary syndrome.

Elife

January 2025

Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.

One in ten women in their reproductive age suffer from polycystic ovary syndrome (PCOS) that, alongside subfertility and hyperandrogenism, typically presents with increased luteinizing hormone (LH) pulsatility. As such, it is suspected that the arcuate kisspeptin (ARN) neurons that represent the GnRH pulse generator are dysfunctional in PCOS. We used here in vivo GCaMP fiber photometry and other approaches to examine the behavior of the GnRH pulse generator in two mouse models of PCOS.

View Article and Find Full Text PDF

Background: Per American Cancer Society, breast cancer is one of the most prevalent causes of cancer-related mortality in women in the United States. Different organizations vary in their recommendations regarding frequency of mammograms, with the United State Preventive Service Taskforce recommending biennial screening and other organizations like American College of Radiology promoting annual screening. The purpose of this study was to analyze institutional data to compare breast cancer detection rates among women undergoing annual vs.

View Article and Find Full Text PDF

Progesterone Regulates Gut Microbiota Mediating Bone Marrow MSCs Injury in ITP Patients during Pregnancy.

J Thromb Haemost

January 2025

Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Clinical Research Center for Hematologic Disease, Beijing, China. Electronic address:

Background: Immune thrombocytopenia during pregnancy (PITP) is the most common cause of platelet reduction in early and mid-pregnancy. However, the pathogenesis of PITP is still unclear.

Objectives: To determine the characteristics of bone marrow mesenchymal stem cells (BM-MSCs) in PITP patients and to explore the associations between metabolites, the gut microbiota, and BM-MSCs in PITP.

View Article and Find Full Text PDF
Article Synopsis
  • This study focused on detecting Estrogen Receptor (ER), Progesterone Receptor (PR), and HER-2 in breast cancer to help categorize the disease and guide treatment choices.
  • Researchers compared two preservation methods for breast tissue samples: traditional formalin fixation and RNAlater, utilizing Immunohistochemistry (IHC) and Quantitative Polymerase Chain Reaction (qPCR) for analysis.
  • Findings revealed that ER and PR were positive in 60% of samples, while HER-2 was positive in only 25%, with no significant statistical difference between the results from the two preservation methods.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!