DNA-Assisted Assembly of Gold Nanostructures and Their Induced Optical Properties.

Nanomaterials (Basel)

Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.

Published: December 2018

Gold nanocrystals have attracted considerable attention due to their excellent physical and chemical properties and their extensive applications in plasmonics, spectroscopy, biological detection, and nanoelectronics. Gold nanoparticles are able to be readily modified and arranged with DNA materials and protein molecules, as well as viruses. Particularly DNA materials with the advantages endowed by programmability, stability, specificity, and the capability to adapt to functionalization, have become the most promising candidates that are widely utilized for building plenty of discrete gold nanoarchitectures. This review highlights recent advances on the DNA-based assembly of gold nanostructures and especially emphasizes their resulted superior optical properties and principles, including plasmonic extinction, plasmonic chirality, surface enhanced fluorescence (SEF), and surface-enhanced Raman scattering (SERS).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6315397PMC
http://dx.doi.org/10.3390/nano8120994DOI Listing

Publication Analysis

Top Keywords

assembly gold
8
gold nanostructures
8
optical properties
8
dna materials
8
gold
5
dna-assisted assembly
4
nanostructures induced
4
induced optical
4
properties gold
4
gold nanocrystals
4

Similar Publications

Stepwise Lighting Up Gold(I)-Thiolate Complexes from AIE Nanoaggregates to AIEE Nanoprobes with a ZIF-8 Shell for Glucose Biosensing.

Anal Chem

January 2025

School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.

Aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) has endowed gold species with responsive fluorescent properties, favoring their potential applications in sensing, imaging, and therapy. However, it remains an interesting challenge to fabricate fluorophores with both AIE and AIEE effects. Herein, we presented highly luminescent Au(I) thiolate nanocomplex-based biosensors with Zn induced-AIE and zeolite imidazolate framework (ZIF-8) induced-AIEE effects.

View Article and Find Full Text PDF

Simultaneous or separate detection of heavy metal ions Hg and Ag based on lateral flow assays.

Mikrochim Acta

January 2025

Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.

A lateral flow assay (LFA) was developed for the simultaneous or separate detection of mercury ion and silver ion based on isothermal nucleic acid amplification. T-Hg-T and C-Ag-C were utilized in the isothermal nucleic acid amplification strategy to form specific complementary base pairs. Under the action of KF polymerase and endonuclease Nt.

View Article and Find Full Text PDF

Applying hollow octahedron PtNPs/Pd-CuO nanozyme and highly conductive AuPtNPs/Ni-Co NCs to colorimetric -electrochemical dual-mode aptasensor for AFB1 detection.

Anal Chim Acta

February 2025

College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.

Background: Aflatoxin B1 (AFB1) is a secondary metabolite produced by Aspergillus flavus and Aspergillus parasiticus. This toxin is highly carcinogenic and toxic, posing a serious threat to human and animal health. AFB1 primarily enters the human body through contaminated food, particularly peanuts, corn, nuts, and wheat.

View Article and Find Full Text PDF

A portable paper-based surface enhanced Raman scattering platform for Al sensing.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

College of Chemistry, Liaoning University, Shenyang 110036, China. Electronic address:

The adverse effects of Al ions on human health necessitate the development of ultra-sensitive detection methods for Al ions. In this regard, the compact and portable design of the detection substrate is of utmost importance for achieving in-situ and sensitive detection of Al ions. In our study, we have successfully developed a surface-enhanced Raman scattering (SERS) platform with gold nanoparticles (Au NPs) that was modified with histidine (His) and 4-mercaptobenzoic acid (4-MBA) for the SERS detection of Al ions.

View Article and Find Full Text PDF

Solution-phase nucleic acid reaction weaves interfacial barriers on unmodified electrodes: Just-in-time generation of sensor interface for convenient and highly sensitive bioassays.

Talanta

January 2025

The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China. Electronic address:

Electrochemical bioassays that rely on sensor interfaces based on immobilized DNA probes often encounter challenges such as complex fabrication processes and limited binding efficiency. In this study, we developed a novel electrochemical bioassay that bypasses the need for probe immobilization by employing a solution-phase nucleic acid reaction to create interfacial barriers on unmodified electrodes, enabling rapid, just-in-time sensor interface formation. Specifically, a 3'-phosphorylated recognition probe was used to identify the target microRNA-21 (miR-21), followed by target recycling facilitated by duplex-specific nuclease (DSN), which resulted in extensive hydrolysis of the recognition probe into DNA fragments with 3'-hydroxyl ends.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!