A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Classical QSAR and Docking Simulation of 4-Pyridone Derivatives for Their Antimalarial Activity. | LitMetric

Classical QSAR and Docking Simulation of 4-Pyridone Derivatives for Their Antimalarial Activity.

Molecules

Grupo de Investigación en Oxi/Hidrotratamiento Catalítico y Nuevos Materiales, Programa de Química-Ciencias Básicas, Universidad del Atlántico, Barranquilla 081001, Colombia.

Published: December 2018

In this work, the minimum energy structures of 22 4-pyridone derivatives have been optimized at Density Functional Theory level, and several quantum molecular, including electronic and thermodynamic descriptors, were computed for these substrates in order to obtain a statistical and meaningful QSAR equation. In this sense, by using multiple linear regressions, five mathematical models have been obtained. The best model with only four descriptors (r² = 0.86, Q² = 0.92, S.E.P = 0.38) was validated by the leave-one-out cross-validation method. The antimalarial activity can be explained by the combination of the four mentioned descriptors e.g., electronic potential, dipolar momentum, partition coefficient and molar refractivity. The statistical parameters of this model suggest that it is robust enough to predict the antimalarial activity of new possible compounds; consequently, three small chemical modifications into the structural core of these compounds were performed specifically on the most active compound of the series (compound 13). These three new suggested compounds were leveled as 13A, 13B and 13C, and the predicted biological antimalarial activity is 0.02 µM, 0.03 µM, and 0.07 µM, respectively. In order to complement these results focused on the possible action mechanism of the substrates, a docking simulation was included for these new structures as well as for the compound 13 and the docking scores (binding affinity) obtained for the interaction of these substrates with the cytochrome bc1, were -7.5, -7.2, -6.9 and -7.5 kcal/mol for 13A, 13B, 13C and compound 13, respectively, which suggests that these compounds are good candidates for its biological application in this illness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321536PMC
http://dx.doi.org/10.3390/molecules23123166DOI Listing

Publication Analysis

Top Keywords

antimalarial activity
16
docking simulation
8
4-pyridone derivatives
8
13a 13b
8
13b 13c
8
classical qsar
4
qsar docking
4
simulation 4-pyridone
4
antimalarial
4
derivatives antimalarial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!