l-cysteine (Cys)- and l-serine (Ser)-modified, third-generation polyamidoamine (PAMAM) dendrimer with multiple reduced thiols (Ser-PAMAM-Cys) was synthesized as a kidney-targeting reactive oxygen species (ROS) scavenger to help prevent renal ischemia/reperfusion injury. Ser-PAMAM-Cys effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and ROS (hydrogen peroxide and hydroxyl radical) in phosphate-buffered saline (PBS). In addition, ~64% of In-labeled Ser-PAMAM-Cys accumulated in mouse kidney 3 h after intravenous administration. An in vivo imaging system (IVIS) study indicated that near-infrared fluorescence dye (NIR)-labeled Ser-PAMAM-Cys specifically accumulated in the kidney. In a mouse renal ischemia/reperfusion injury model, increases in the kidney damage markers creatinine (Cre) and blood urea nitrogen (BUN) were significantly inhibited by intravenous Ser-PAMAM-Cys administration. In contrast, Cys injection had no statistically significant effect of preventing Cre or BUN elevation relative to the control. Ser-PAMAM-Cys also effectively downregulated the inflammatory factors NGAL, IL-18, ICAM-1, and VCAM-1 in the renal ischemia/reperfusion injury model. These results indicate that Ser-PAMAM-Cys is a promising kidney-targeting ROS scavenger which could prevent ischemia/reperfusion-induced renal failure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321508 | PMC |
http://dx.doi.org/10.3390/pharmaceutics10040251 | DOI Listing |
Iran J Kidney Dis
December 2024
Pathology Department, Afzalipour Kerman University of Medical Sciences, Kerman, Iran.
Introduction: Ischemia followed by reperfusion in organ transplantations can lead to ischemia-reperfusion (I-R) injury, which is associated with oxidative stress and inflammatory responses. Alpha-pinene is an organic terpene with well-known antioxidant, anti-inflammatory, and anti-apoptotic properties. This study examines the preventive effects of alpha-pinene against renal I-R-induced kidney dysfunction, oxidative and inflammatory status, apoptosis, and histopathology changes.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Medical Records Management and Statistics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Unlabelled: Although the link between ischemia-reperfusion injury (IRI) and T cell-mediated rejection (TCMR) in kidney transplantation (KT) is well known, the mechanism remains unclear. We investigated essential genes and biological processes involved in interactions between IRI and TCMR.
Methods: Renal IRI and TCMR datasets were obtained from the Gene Expression Omnibus database.
Mol Med
December 2024
Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China.
Background: Recent data has shown a considerable advancement in understanding the role of lymphotoxin-β receptor (LTβR) in inflammation. However, the functions and underlying mechanisms of LTβR in acute kidney injury (AKI) remain largely unknown.
Methods: AKI was induced in mice by renal ischemia-reperfusion (I/R).
Mol Med
December 2024
Batiment Recherche, INSERM UMR S1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France.
Background: We have previously reported that the gap junction protein connexin 43 (Cx43) was upregulated in chronic renal disease in humans and rodents and plays a crucial role in the progression of experimental nephropathy. In this study, we investigated its role after renal ischemia/reperfusion (rIR), which is a major mechanism of injury in acute renal injury (AKI) and renal transplant graft dysfunction.
Methods: Wild-type mice (WT) and mice in which Cx43 expression was genetically reduced by half (Cx43 ±) were unilaterally nephrectomized.
Commun Biol
December 2024
Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
Acute kidney injury (AKI) is a common and life-threatening condition associated with cell death, where ferroptosis plays a critical role. Chemerin, primarily produced in white adipose tissue, has multiple biological functions in renal pathophysiology. However, to date, whether and how chemerin regulates the progression of AKI remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!