The well-known and rapidly growing phenomenon of bacterial resistance to antibiotics is caused by uncontrolled, excessive and inappropriate use of antibiotics. One of alternatives to antibiotics is Photodynamic Antibacterial Chemotherapy (PACT). In the present study, the effect of PACT using a photosensitizer Rose Bengal alone and in combination with antibiotics including methicillin and derivatives of sulfanilamide synthesized by us was tested against antibiotic-sensitive and antibiotic-resistant clinical isolates of Gram-positive and Gram-negative . Antibiotic-sensitive and resistant strains of were eradicated by Rose Bengal under illumination and by sulfanilamide but were not inhibited by new sulfanilamide derivatives. No increase in sensitivity of cells to sulfanilamide was observed upon a combination of Rose Bengal and sulfanilamide under illumination. All tested strains (MSSA and MRSA) were effectively inhibited by PACT. When treated with sub-MIC concentrations of Rose Bengal under illumination, the minimum inhibitory concentrations (MIC) of methicillin decreased significantly for MSSA and MRSA strains. In some cases, antibiotic sensitivity of resistant strains can be restored by combining antibiotics with PACT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320794PMC
http://dx.doi.org/10.3390/molecules23123152DOI Listing

Publication Analysis

Top Keywords

rose bengal
16
photodynamic antibacterial
8
antibacterial chemotherapy
8
gram-positive gram-negative
8
resistant strains
8
bengal illumination
8
mssa mrsa
8
antibiotics
6
sulfanilamide
5
chemotherapy combined
4

Similar Publications

Brucellosis is a common zoonotic disease affecting livestock and humans globally. The disease is endemic in Ethiopian livestock. This study was conducted to estimate seropositivity and identify its risk factors in livestock, and practices that may expose pastoralists to the disease.

View Article and Find Full Text PDF

Exploring Gluconamide-Modified Silica Nanoparticles of Different Sizes as Effective Carriers for Antimicrobial Photodynamic Therapy.

Nanomaterials (Basel)

December 2024

Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV-EHU, Apartado 644, 48080 Bilbao, Spain.

Antimicrobial resistance (AMR), a consequence of the ability of microorganisms, especially bacteria, to develop resistance against conventional antibiotics, hampering the treatment of common infections, is recognized as one of the most imperative health threats of this century. Antibacterial photodynamic therapy (aPDT) has emerged as a promising alternative strategy, utilizing photosensitizers activated by light to generate reactive oxygen species (ROS) that kill pathogens without inducing resistance. In this work, we synthesized silica nanoparticles (NPs) of different sizes (20 nm, 80 nm, and 250 nm) functionalized with the photosensitizer Rose Bengal (RB) and a gluconamide ligand, which targets Gram-negative bacteria, to assess their potential in aPDT.

View Article and Find Full Text PDF

This study compares magnetite (Fe3O4) nanoparticles synthesized using Aspergillus elegans extract versus commercially available magnetite nanoparticles, focusing on their efficacy in dye degradation. The biosynthesis of Fe3O4 nanoparticles using fungal extracts offers a sustainable and eco-friendly alternative to conventional chemical methods. The nanoparticles were characterized using various techniques, including UV-Vis spectroscopy, XRD, FTIR, SEM, TEM, DLS, zeta potential, and VSM analysis, to assess their structural, morphological, and magnetic properties.

View Article and Find Full Text PDF

Photosensitizing compounds are eco-friendly promising organic dyes for managing insect pests without facing the risk of resistance. The photodynamic efficacy of four Photosensitizing compounds (rose Bengal, rhodamine B, methylene blue and methyl violet) was monitored against the third larval instar of Spodoptera littoralis (Boisduval), after exposure to sunlight. The LC values of the four compounds; rose Bengal, rhodamine B, methylene blue and methyl violet recorded 0.

View Article and Find Full Text PDF

Type I and Type II photosensitization of DNA etheno adducts.

Photochem Photobiol Sci

December 2024

Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022, Valencia, Spain.

Photophysical and photochemical studies were carried out to examine the photoreactivity of etheno adducts, 1,N-ethenoadenine (εdA) and 1,N-ethenoguanine (εdG), in the presence of two well-known photosensitizers acting by Type I and/or Type II mechanisms such as 4-carboxybenzophenone (CBP) and rose Bengal (RB), respectively. Steady-state photolysis experiments combined with HPLC and mass spectroscopy measurements lead to photoproducts that correspond to the repaired nucleosides. To determine the mechanism of this photooxidation processes, phosphorescence spectroscopy, direct detection of singlet oxygen luminescence and laser flash photolysis were carried out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!