Transgenic tomato plants (Solanum lycopersicum L. cv. MicroTom) overexpressing both the K,Na/H antiporter LeNHX2 and the regulatory kinase SlSOS2 were produced by crossing transgenic homozygous lines overexpressing LeNHX2 and SlSOS2. LeNHX2 expression was enhanced in plants overexpressing LeNHX2 but surprisingly even more in plants overexpressing SlSOS2 with and without LeNHX2. All transgenic plants showed better NaCl tolerance than wild type controls and plants overexpressing both LeNHX2 and SlSOS2 grew better under saline conditions than plants overexpressing only one of these genes. Yield related parameters indicated that single and above all double transgenic plants performed significantly better than wild type controls. All transgenic plants produced fruits with a higher K content than wild-type plants and plants overexpressing SlSOS2 accumulated more Na in fruits than the rest of the plants when grown with NaCl. Roots, stems and leaves of transgenic plants overexpressing LeNHX2 showed a higher K content than wild type and single transgenic plants overexpressing SlSOS2. Na content in stems and leaves of NaCl treated plants was higher in SlSOS2 overexpressing plants than in wild type and LeNHX2 single transgenic plants. All transgenic lines showed a higher leaf relative water content and a higher plant water content and water use efficiency than wild type controls when both were grown in the presence of NaCl. Results in this work indicate that the joint overexpression of LeNHX2 and SlSOS2 improves growth and water status under NaCl stress, affects K and Na homeostasis and enhances fruit yield of tomato plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2018.11.028 | DOI Listing |
Plant Sci
January 2025
Shanghai Agrobiological Gene Center, Shanghai, 201106 China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China. Electronic address:
Nuclear factor Y (NF-Y) is an evolutionarily conserved heterotrimeric transcription factor in eukaryotes. In a previous study, OsNF-YB12 was confirmed to be associated with drought tolerance using the Ecotilling method. In this study, real-time quantitative RT-PCR revealed that OsNF-YB12 was induced by various abiotic stresses and phytohormones, with expression levels differing between leaves and roots.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:
Aluminium (Al)-induced programmed cell death (PCD) is thought to be a main cause of Al phytotoxicity. However, the underlying mechanism by which Al induces PCD in plants is unclear. In this study, we characterized the function of AhASRK1 (Aluminum Sensitive Receptor-like protein Kinase1), an Al-induced LRR-type receptor-like kinase gene.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.
View Article and Find Full Text PDFCell Death Discov
January 2025
State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China.
Indoleamine 2, 3-dioxygenase 1 (IDO1) has been recognized as an enzyme involved in tryptophan catabolism with immunosuppressive ability. This study determined to investigate the impact of IDO1 on glioblastoma multiforme (GBM) cells. Here, we showed that the expression of IDO1 was markedly increased in patients with glioma and associated with GBM progression.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China. Electronic address:
Long-term cadmium (Cd) exposure inhibits plant growth and development, reduces crop yield and quality, and threatens food security. Exploring the Cd tolerance mechanisms and safe production of crops in Cd-contaminated environment has become a worldwide concern. In this study, mung bean (Vigna radiata L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!