Alginate-Based Delivery Systems for Bevacizumab Local Therapy: In Vitro Structural Features and Release Properties.

J Pharm Sci

Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara, Rodovia Araraquara-Jaú, km 1, 14.801-902 Araraquara, SP, Brazil. Electronic address:

Published: April 2019

Alginate-based polyelectrolyte complexes (PECs) and hydrogel were engineered as platforms for local bevacizumab (BVZ) therapy. This study provides deep comprehension on the microstructures of such systems, and their correlation with drug-release patterns. PECs and hydrogel were characterized using Fourier transform infrared spectroscopy, small-angle X-ray scattering, scanning electron microscopy, atomic force microscopy, and porosimetry. Structural investigations indicated that PECs are formed by supramolecular interactions, resulting in physically cross-linked polymer networks, whereas the BVZ-loaded hydrogel has a more compact and rigid structure, promoting better entrapment of BVZ. PECs and hydrogel were able to control the BVZ release for 4 and 8 days, respectively. Their release profiles correlated best with the Higuchi and Korsmeyer-Peppas models, respectively, indicating drug diffusion as the limiting step for drug release. Furthermore, BVZ remained biologically active in vitro after its incorporation into the hydrogel system. Together, these studies confirm that PECs and hydrogel exhibit different porous structures and physicochemical properties, making them promising platforms that allow the modulation of BVZ release meeting different requirements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2018.11.038DOI Listing

Publication Analysis

Top Keywords

pecs hydrogel
16
bvz release
8
hydrogel
6
release
5
pecs
5
bvz
5
alginate-based delivery
4
delivery systems
4
systems bevacizumab
4
bevacizumab local
4

Similar Publications

Chitosan/alginate polyelectrolyte complex hydrogels by additive manufacturing for in vitro 3D ovarian cancer modeling.

Int J Biol Macromol

January 2025

BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy. Electronic address:

Polyelectrolyte complexes (PECs) are self-assembled systems formed from oppositely charged polymers, used to create hydrogels for cell culture. This work was aimed at additive manufacturing 3D hydrogels made of a PEC between chitosan (Cs) and alginate, as well as their investigation for in vitro 3D ovarian cancer modeling. PEC hydrogels stability in cell culture medium demonstrated their suitability for long-term cell culture applications.

View Article and Find Full Text PDF

Taking into account the trends in the field of green chemistry and the desire to use natural materials in biomedical applications, (bio)polyelectrolyte complexes ((bio)PECs) based on a mixture of chitosan and gelatin seem to be relevant systems. Using the approach of self-assembly from the dispersion of the coacervate phase of a (bio)PEC at different ratios of ionized functional groups of chitosan and gelatin (), hydrogels with increased resistance to mechanical deformations and resorption in liquid media were obtained in this work in comparison to a hydrogel from gelatin. It was found that at ≥ 1 a four-fold increase in the elastic modulus of the hydrogel occurred in comparison to a hydrogel based on gelatin.

View Article and Find Full Text PDF

Droplet-based digital PCR has emerged as a powerful platform for nucleic acid-based detection. However, the formation of droplet compartments and the subsequent amplification process in oil present significant drawbacks: instability under harsh thermal conditions, high background fluorescent noise inside droplets, and major difficulty in supporting multistep assays. Alternatively, droplets made of a hydrogel, or other advanced materials, have been adopted and demonstrate promising improvement over conventional droplet-based platforms.

View Article and Find Full Text PDF
Article Synopsis
  • A biocompatible polyelectrolyte complex (PEC) was created using Tragacanth gum (TG) and chitosan (CS) to explore its potential biological applications, with an optimized TG:CS ratio of 18:2 identified through various tests.
  • The study found that at pH 4, TG and CS showed strong interactions, highlighting charge neutralization in the PECs, which featured a unique macroporous structure.
  • The PEC cryogel demonstrated significant antibacterial activity against E. coli and S. aureus, while also promoting wound healing in human fibroblast cells without any toxic effects.
View Article and Find Full Text PDF

Polysaccharides like hyaluronan (HA) and chondroitin sulfate (CS) are native of the brain's extracellular matrix crucial for myelination and brain maturation. Despite extensive research on HA and CS as drug delivery systems (DDS), their high water solubility limits their application as drug carriers. This study introduces an injectable DDS using aldehyde-modified hyaluronic acid (HAOX) hydrogel containing polyelectrolyte complexes (PEC) formed with calcium, gelatin, and either CS or aldehyde-modified CS (CSOX) to deliver minocycline for Multiple Sclerosis therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!