Early pregnancy is characterized by a series of complex and tightly regulated events to ultimately establish implantation and early placental development. One of the key events is the opening of the decidual spiral arteries into the intervillous space. It leads to a rise in oxygen tension in the intervillous space and the placenta and will induce transcriptional and translational changes of oxygen-sensitive molecules including antioxidants. Diabetes and/or obesity ('diabesity') are associated with changes in the maternal environment, which can affect any of the distinct developmental processes ensuing modifications of onset or magnitude of oxygen tension changes. This may overwhelm the anti-oxidative defence systems developing in parallel to the physiological rise in oxygen tension. The resulting exacerbated oxidative stress, as it was demonstrated in the first trimester placentas of type 1 diabetes mellitus (T1DM) patients, may impair developmental processes. In addition, many components of the diabesity environment can have distinct molecular effects on a range of molecules, but these need to be identified. Insulin is an important contributor to early placental phenotype, because it is involved in regulation of cytotrophoblast-syncytiotrophoblast fusion and placental surface expansion. Its circulating levels are increased in T1DM, because of pharmacologic treatment, and obesity, because of beta-cell compensation of insulin resistance. This constitutes the (patho)physiological link between diabesity and placental growth changes. Microarray studies have identified several molecular and cellular candidate processes altered by insulin in obese pregnancies, including cell cycle regulation and fatty acid and cholesterol metabolism. Research on early diabesity exposure and the placenta is still in its infant stage. To stimulate further studies we have identified some important and pending questions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mam.2018.11.002 | DOI Listing |
J Cereb Blood Flow Metab
January 2025
AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France.
In patients with acute brain injury (ABI), optimizing cerebral perfusion parameters relies on multimodal monitoring. This include data from systemic monitoring-mean arterial pressure (MAP), arterial carbon dioxide tension (PaCO), arterial oxygen saturation (SaO), hemoglobin levels (Hb), and temperature-as well as neurological monitoring-intracranial pressure (ICP), cerebral perfusion pressure (CPP), and transcranial Doppler (TCD) velocities. We hypothesized that these parameters alone were not sufficient to assess the risk of cerebral ischemia.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
Introduction: Preclinical studies have shown that oxygen therapy can improve ischaemic brain tissue oxygen tension, reduce reperfusion injury after revascularisation, promote neuroregeneration and inhibit inflammatory responses potentially exerting a beneficial effect after endovascular treatment (EVT) in patients with acute ischaemic stroke (AIS). However, the optimal fraction of inspired oxygen (FiO) during EVT under general anaesthesia is currently unknown. Therefore, we are conducting a randomised controlled trial (RCT) to evaluate the impact of high-concentration oxygen vs low-concentration normobaric oxygen on early neurological function after EVT.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, PL-04-141, Warsaw, Poland.
Hypoxia, a condition of oxygen tension lower than physiological level, plays a crucial role in shaping the tumor microenvironment and modulates distinct cell populations activity. The tumor suppressor PTEN regulates angiogenesis, a process involving endothelial cells (ECs). Pathological in tumors, it is crucial for growth.
View Article and Find Full Text PDFCureus
November 2024
Anesthesiology and Pain Medicine, Harborview Medical Center, Seattle, USA.
Eur J Intern Med
December 2024
Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, PR China. Electronic address:
Objectives: The purpose of this study was to determine whether our new thinking guidance named OPACCUS (oxygen metabolism, perfusion, arterial tension, cardiac output, systemic congestion, unregulated host response and search for inciting illness event) with 7 questions you need to ask before shock therapy and evidences provided by critical ultrasound considering hemodynamics, the unregulated host response and inciting illness event would improve mortality in shock patients.
Design: A multicenter, prospective, observational cohort study.
Setting: Intensive care units of 20 hospitals in Southwest China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!