A Robust and All-Inclusive Pipeline for Shuffling of Adeno-Associated Viruses.

ACS Synth Biol

Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant) , Heidelberg University Hospital, Heidelberg , 69120 , Germany.

Published: January 2019

Adeno-associated viruses (AAV) are attractive templates for engineering of synthetic gene delivery vectors. A particularly powerful technology for breeding of novel vectors with improved properties is DNA family shuffling, i.e., generation of chimeric capsids by homology-driven DNA recombination. Here, to make AAV DNA shuffling available to a wider community, we present a robust experimental and bioinformatical pipeline comprising: (i) standardized and partially codon-optimized plasmids carrying 12 different AAV capsid genes; (ii) a scalable protocol including troubleshooting guide for viral library production; and (iii) the freely available software SALANTO for comprehensive analysis of chimeric AAV DNA and protein sequences. Moreover, we describe a set of 12 premade and ready-to-use AAV libraries. Finally, we demonstrate the usefulness of DNA barcoding technology to trace AAV capsid libraries within a complex mixture. Our protocols and resources facilitate the implementation and tailoring of AAV evolution technology in any laboratory interested in customized viral gene transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.8b00373DOI Listing

Publication Analysis

Top Keywords

adeno-associated viruses
8
aav dna
8
aav capsid
8
aav
7
dna
5
robust all-inclusive
4
all-inclusive pipeline
4
pipeline shuffling
4
shuffling adeno-associated
4
viruses adeno-associated
4

Similar Publications

Interferon Inhibitors Increase rAAV Production in HEK293 Cells.

J Biotechnol

January 2025

Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854. Electronic address:

Recombinant adeno-associated viruses (rAAVs) comprise a promising viral vector for therapeutic gene delivery to treat disease. However, the current manufacturing capability of rAAVs must be improved to meet commercial demand. Previously published omics studies indicate that rAAV production through transient transfection triggers antiviral responses and endoplasmic reticulum stress responses in the host cell.

View Article and Find Full Text PDF

Adeno-associated viruses (AAV) are among the leading vectors for in vivo gene therapy. The purification of AAV remains a bottleneck as it typically requires multiple individual process steps, often resulting in product loss and high costs. Current downstream processes are usually serotype-specific and rely primarily on expensive affinity resins.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged as the vector of choice for in vivo gene delivery, with numerous clinical trials underway for the treatment of various human diseases. Utilizing rAAV in gene therapy requires a highly precise quantification method to determine the viral genome titer and further establish the optimal therapeutic dosage for a rAAV product. The conventional single-channel droplet digital PCR (1D ddPCR) method offers only partial information regarding the viral vector genome titer, lacking insights into its integrity.

View Article and Find Full Text PDF

Adeno-Associated Viruses as Gene Delivery Tools for Diabetic Heart Disease and Failure: Key Considerations for Clinicians and Preclinical Researchers.

Heart Lung Circ

January 2025

Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Vic, Australia; Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia. Electronic address:

Diabetes is becoming more common worldwide, and people with diabetes are twice as likely to experience heart problems compared to those without diabetes. These cardiovascular complications are the foremost cause of mortality among people with diabetes. A specific form of heart failure known as "diabetic cardiomyopathy" can develop in individuals with diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!