Modulating the structure and property of hole-transporting organic semiconductors is of paramount importance for high-efficiency and stable perovskite solar cells (PSCs). This work reports a low-cost peri-xanthenoxanthene based small-molecule P1, which is prepared at a total yield of 82 % using a three-step synthetic route from the low-cost starting material 2-naphthol. P1 molecules stack in one-dimensional columnar arrangement characteristic of strong intermolecular π-π interactions, contributing to the formation of a solution-processed, semicrystalline thin-film exhibiting one order of magnitude higher hole mobility than the amorphous one based on the state-of-the art hole-transporter, 2,2-7,7-tetrakis(N,N'-di-paramethoxy-phenylamine 9,9'-spirobifluorene (spiro-OMeTAD). PSCs employing P1 as the hole-transporting layer attain a high efficiency of 19.8 % at the standard AM 1.5 G conditions, and good long-term stability under continuous full sunlight exposure at 40 °C.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201806015DOI Listing

Publication Analysis

Top Keywords

stable perovskite
8
perovskite solar
8
solar cells
8
peri-xanthenoxanthene centered
4
centered columnar-stacking
4
columnar-stacking organic
4
organic semiconductor
4
semiconductor efficient
4
efficient photothermally
4
photothermally stable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!