CRISPR Craft: DNA Editing the Reconstructive Ladder.

Plast Reconstr Surg

From Harvard Medical School; the Center for Regenerative Medicine; the Harvard Stem Cell Institute; and the Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital.

Published: November 2018

The clustered regularly interspaced short palindromic repeats (CRISPR) system of genome editing represents a major technological advance spanning all areas of genetics and downstream applications. CRISPR's potential impact on treating human disease encompasses all clinical specialties, including areas important to the plastic surgeon such as oncology, wound healing, immunology, and craniofacial malformations. Plastic surgeons should gain familiarity with this gene editing technology, and become active contributors and leaders in applying CRISPR to their respective areas of expertise. This review describes the history and basic mechanism of CRISPR genome editing, highlights current and future applications, and discusses limitations. The authors will consider CRISPR's potential impact and use in plastic and reconstructive surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0000000000004863DOI Listing

Publication Analysis

Top Keywords

genome editing
8
crispr's potential
8
potential impact
8
crispr
4
crispr craft
4
craft dna
4
editing
4
dna editing
4
editing reconstructive
4
reconstructive ladder
4

Similar Publications

Evaluation of Complement-Dependent Cytotoxicity Assays for Gene-Edited Pig-to-Human Xenotransplantation.

Xenotransplantation

January 2025

Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Background: Gene-edited pigs for xenotransplantation usually contain one or more transgenes encoding human complement regulatory proteins (CRPs). Because of species differences, human CRP(s) expressed in gene-edited pigs may have difficulty inhibiting the activation of exogenous rabbit complement added to a complement-dependent cytotoxicity (CDC) assay. The use of human complement instead of rabbit complement in CDC experiments may more accurately reflect the actual regulatory activity of human CRP(s).

View Article and Find Full Text PDF

A parallel bioreactor strategy to rapidly determine growth-coupling relationships for bioproduction: a mevalonate case study.

Biotechnol Biofuels Bioprod

January 2025

Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

Background: The climate crisis and depleting fossil fuel reserves have led to a drive for 'green' alternatives to the way we manufacture chemicals, and the formation of a bioeconomy that reduces our reliance on petrochemical-based feedstocks. Advances in Synthetic biology have provided the opportunity to engineer micro-organisms to produce compounds from renewable feedstocks, which could play a role in replacing traditional, petrochemical based, manufacturing routes. However, there are few examples of bio-manufactured products achieving commercialisation.

View Article and Find Full Text PDF

The cell adhesion molecule Leucine-Rich Repeat Transmembrane neuronal protein 2 (LRRTM2) is crucial for synapse development and function. However, our understanding of its endogenous trafficking has been limited due to difficulties in manipulating its coding sequence (CDS) using standard genome editing techniques. Instead, we replaced the entire LRRTM2 CDS by adapting a two-guide CRISPR knock-in method, enabling complete control of LRRTM2.

View Article and Find Full Text PDF

Current approaches in CRISPR-Cas systems for diabetes.

Prog Mol Biol Transl Sci

January 2025

R and D, Salem Microbes Private Limited, Salem, Tamil Nadu, India. Electronic address:

In the face of advancements in health care and a shift towards healthy lifestyle, diabetes mellitus (DM) still presents as a global health challenge. This chapter explores recent advancements in the areas of genetic and molecular underpinnings of DM, addressing the revolutionary potential of CRISPR-based genome editing technologies. We delve into the multifaceted relationship between genes and molecular pathways contributing to both type1 and type 2 diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!