The duration of contact time of intratympanic steroids at the round window is a variable that can potentially affect the ultimate concentration within the cochlea. By placing Gelfoam saturated with dexamethasone directly over the round window, contact time is prolonged and potentially increases the dexamethasone concentration within the cochlea. This technique is simple, readily available with standard instruments and ingredients, and easily done in the office.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0194599818816306 | DOI Listing |
J Am Chem Soc
January 2025
Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.
Direct translocation of RNA with secondary structures using single-molecule electrophoresis through protein nanopores shows significant fluctuations in the measured ionic current, in contrast to unstructured single-stranded RNA or DNA. We developed a multiscale model combining the oxRNA model for RNA with the 3-dimensional Poisson-Nernst-Planck formalism for electric fields within protein pores, aiming to map RNA conformations to ionic currents as RNA translocates through three protein nanopores: α-hemolysin, CsgG, and MspA. Our findings reveal three distinct stages of translocation (pseudoknot, melting, and molten globule) based on contact maps and current values.
View Article and Find Full Text PDFVaccine X
January 2025
Reference Center for Gender-specific Medicine, Istituto Superiore di Sanità [Italian National Institute of Health], Rome, Italy.
Globally, healthcare workers (HCWs) are at greater risk of contracting Hepatitis B virus (HBV) infection than the general population, due to their frequent contact with blood or body fluids. For this reason, WHO underlined the importance of HBV immunization for all HCWs. Although sex is now considered one of the key factors influencing the intensity and duration of the immune response to vaccines, sex-specific analysis of vaccine-induced anti-HBs antibodies is rarely conducted.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, Mardin, Turkey.
In the current research mushroom/bentonite clay (RDBNC) as a low-cost bionanosorbent was investigated for adsorption of methylene blue (MB) and malachite green (MG) dye from contaminated water. The bionanosorbent was characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (FESEM), Thermal Gravimetric Analysis (TGA), and Zeta-potential techniques. Adsorption experiments of RDBNC for MB, MG dyes following Freundlich isotherm and pseudo second order kinetic models.
View Article and Find Full Text PDFHeliyon
January 2025
Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
Eutrophication and hypereutrophication in lakes foster harmful blue-green algal blooms, which pose a significant threat to the ecological health of freshwater reservoirs. This study investigated the effectiveness of the bio-flocculation approach using the fungus strain BGF4A1 to remove these harmful blooms, specifically targeting cyanobacterial species like PCC-7914. Key flocculation parameters, cyanobacterial concentrations, adsorption kinetics, and pellet morphology were explored in this research.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Biomedical Research Institute of Southern California, Oceanside, CA, United States.
Interferon types-I/II (IFN-αβ/γ) secretions are well-established antiviral host defenses. The human immunodeficiency virus (HIV) particles are known to prevail following targeted cellular interferon secretion. CD4 T-lymphocytes are the primary receptor targets for HIV entry, but the virus has been observed to hide (be latent) successfully in these cells through an alternate entry route via interactions with LFA1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!