Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Self-assembled diphenylalanine (FF) nanostructures have recently been demonstrated to be interesting materials for antibacterial and anticancer applications. These applications, among others, seek to take advantage of the high-order and resulting appealing physical properties of FF nanostructures by modifying the peptide in some way to achieve specific functionality. To rationally design modifications to the dipeptide that allow for this behavior, the driving forces of FF self-assembly must be understood. Molecular simulations have been utilized to assess these properties but have yielded conflicting conclusions due to inconsistencies in models chosen as well as the lack of quantitative analyses on the specific driving forces. Here, we present an all-atom explicit solvent molecular dynamics-based study on different length scales of FF aggregation. We utilize a free energy decomposition analysis as well as a dimer cluster analysis to identify the initial aggregation driving force to be FF intermolecular electrostatics, whereas solvent-mediated forces drive crystal growth. These data are consistent with the hypothesis that all hydrophobic dipeptides will have a similar initial aggregation mechanism until a critical aggregate size is reached, at which point crystallization occurs and subsequent crystal growth is dominated by solvent-mediated forces. We demonstrate that this proposed mechanism is testable by infrared spectroscopy focusing on the blueshift of the amide I peak as well as the ordering of the carboxylate peak.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.8b10335 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!