Herein, we have synthesized at room-temperature two-dimensional nanosheets of a MOF comprised of cobalt(II) ion with benzenedicarboxylic acid ligand, which exhibited unusual magnetic properties. Direct-current magnetic susceptibility revealed an antiferromagnetic (AFM) transition at 26 K (Néel temperature, T) followed by a canting of the spin moments along with the concomitant appearance of a sigmoidal-shaped magnetization versus field ( M- H) curve at 15 K. Such a canted AFM ordering led to nonzero remnant magnetization with a remarkably high coercive field of ∼10 kOe at 5 K. Metamagnetism was further substantiated by the alternating-current magnetic susceptibility measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.8b03064 | DOI Listing |
PLoS One
January 2025
Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan.
Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China.
The discovery of two-dimensional (2D) van der Waals ferromagnetic materials opens up new avenues for making devices with high information storage density, ultra-fast response, high integration, and low power consumption. FeGeTe has attracted much attention because of its ferromagnetic transition temperature near room temperature. However, the investigation of its phase transition is rare until now.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
Using the effective mass approximation and the finite difference method, we examined the linear, non-linear, and total optical absorption coefficients (OAC), as well as the relative refractive index coefficients (RIC) variations for an off-center shallow donor impurity in a 2D-curved electronic nanostructure subjected to external electric and magnetic fields. Our results reveal that the peak positions of the OAC and RIC are susceptible to the geometrical angles, the impurity position, and the strength of the applied electric and magnetic fields. In particular, the positions of the OAC and RIC peaks can be shifted towards blue or red by adjusting the geometric angle.
View Article and Find Full Text PDFInt J Rheum Dis
January 2025
Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Erciyes University School of Medicine, Kayseri, Turkey.
A 19-year-old male patient with phenylketonuria (PKU) was presented to our clinic with complaints of left hip pain and fever for one week. Physical examination and MRI examination showed findings compatible with pyogenic sacroiliitis and an abscess in the left iliopsoas muscle. The patient's clinical and radiological findings improved markedly with empirical antibiotic treatment.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
Antibiotic tolerance presents a significant challenge in eradicating bacterial infections, as tolerant strains can survive antibiotic treatment, contributing to the recurrence of infections and the development of resistance. However, unlike antibiotic resistance, tolerance is not detectable by standard susceptibility assays such as minimal inhibitory concentration (MIC) tests. Consequently, antibiotic tolerance often goes unnoticed in clinical settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!