A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of Organic Dye-Based Molecular Materials for Use in Fullerene-Free Organic Solar Cells. | LitMetric

Development of Organic Dye-Based Molecular Materials for Use in Fullerene-Free Organic Solar Cells.

Chem Rec

Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2 N 1 N4.

Published: June 2019

This personal account describes the pursuit of non-fullerene acceptors designed from simple and accessible organic pi-conjugated building blocks and assembled through efficient direct (hetero)arylation cross-coupling protocols. Initial materials development focused on isoindigo and diketopyrrolopyrrole organic dyes flanked by imide-based terminal acceptors. Efficiencies in solution-processed organic solar cells were modest but highlighted the potential of the material design. Materials performance was improved through structural engineering to pair perylene diimide with these organic dyes. Optimization of active layer processing and solar cell device fabrication identified the perylene diimide flanked diketopyrrolopyrrole structure as the best framework, with fullerene-free organic solar cells achieving power conversion efficiencies above 6 %. This material has met our criteria for a simple wide band gap fullerene alternative for pairing with a range of donor polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.201800114DOI Listing

Publication Analysis

Top Keywords

organic solar
12
solar cells
12
fullerene-free organic
8
organic dyes
8
perylene diimide
8
organic
6
development organic
4
organic dye-based
4
dye-based molecular
4
molecular materials
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!