Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8fd90052c | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
The pseudogap phenomena have been a long-standing mystery of the cuprate high-temperature superconductors. The pseudogap in the electron-doped cuprates has been attributed to band folding due to antiferromagnetic (AFM) long-range order or short-range correlation. We performed an angle-resolved photoemission spectroscopy study of the electron-doped cuprates PrLaCeCuO showing spin-glass, disordered AFM behaviors, and superconductivity at low temperatures and, by measurements with fine momentum cuts, found that the gap opens on the unfolded Fermi surface rather than the AFM Brillouin zone boundary.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
BIFOLD─Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany.
While machine learning (ML) models have been able to achieve unprecedented accuracies across various prediction tasks in quantum chemistry, it is now apparent that accuracy on a test set alone is not a guarantee for robust chemical modeling such as stable molecular dynamics (MD). To go beyond accuracy, we use explainable artificial intelligence (XAI) techniques to develop a general analysis framework for atomic interactions and apply it to the SchNet and PaiNN neural network models. We compare these interactions with a set of fundamental chemical principles to understand how well the models have learned the underlying physicochemical concepts from the data.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
Single nanoparticle analysis is crucial for various applications in biology, materials, and energy. However, precisely profiling and monitoring weakly scattering nanoparticles remains challenging. Here, it is demonstrated that deep learning-empowered plasmonic microscopy (Deep-SM) enables precise sizing and collision detection of functional chemical and biological nanoparticles.
View Article and Find Full Text PDFSci Adv
January 2025
NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.
Magnonics, which harnesses the unique properties of spin waves, offers promising advancements in data processing due to its broad frequency range, nonlinear dynamics, and scalability for on-chip integration. Effective information encoding in magnonic systems requires precise spatial and temporal control of spin waves. Here, we demonstrate the rapid optical control of spin-wave transport in hybrid magnonic-plasmonic structures.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
We design and construct an ultrafast optical spectroscopy instrument that integrates both on-site in situ high-pressure technique and low-temperature tuning capability. Conventional related instruments rely on off-site tuning and calibration of the high pressure. Recently, we have developed an on-site in situ technique, which has the advantage of removing repositioning fluctuation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!