Background: Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in North America, accounting for >30,000 deaths annually. Although somatic activating mutations in appear in 97% of PDAC patients, additional factors are required to initiate PDAC. Because mutations in genes encoding chromatin remodelling proteins have been implicated in KRAS-mediated PDAC, we investigated whether loss of chromatin remodeler ɑ-thalassemia, mental-retardation, X-linked (ATRX) affects oncogenic KRAS's ability to promote PDAC. ATRX affects DNA replication, repair, and gene expression and is implicated in other cancers including glioblastomas and pancreatic neuroendocrine tumors. The hypothesis was that deletion of in pancreatic acinar cells will increase susceptibility to injury and oncogenic KRAS.
Methods: Mice allowing conditional loss of within pancreatic acinar cells were examined after induction of recurrent cerulein-induced pancreatitis or oncogenic KRAS ( ). Histologic, biochemical, and molecular analysis examined pancreatic pathologies up to 2 months after induction of deletion.
Results: Mice lacking showed more progressive damage, inflammation, and acinar-to-duct cell metaplasia in response to injury relative to wild-type mice. In combination with KRAS, -deficient acinar cells showed increased fibrosis, inflammation, progression to acinar-to-duct cell metaplasia, and pre-cancerous lesions relative to mice expressing only KRAS. This sensitivity appears only in female mice, mimicking a significant prevalence of mutations in human female PDAC patients.
Conclusions: Our results indicate the absence of ATRX increases sensitivity to injury and oncogenic KRAS only in female mice. This is an instance of a sex-specific mutation that enhances oncogenic KRAS's ability to promote pancreatic intraepithelial lesion formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260375 | PMC |
http://dx.doi.org/10.1016/j.jcmgh.2018.09.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!