The Tibetan cashmere goat is one of the main goat breeds used by people living in the plateau. It exhibits the distinct phenotypic characteristics observed in lowland goats, allowing them to adapt to the challenging conditions at high altitudes. It provides an ideal model for understanding the genetic mechanisms underlying high-altitude adaptation and hypoxia-related diseases. Our previous exome sequencing of five Chinese cashmere breeds revealed a candidate gene, (Desmoglein ), responsible for the high-altitude adaptation of the Tibetan goat. However, the whole gene (44 kbp) consisting of 16 exons in the goat genome was not entirely covered by the exome sequencing. In this study, we resequenced all the 16 exons of the DSG3 gene in ten Chinese native goat populations. Twenty-seven SNP variants were found between the lowland and highland goat populations. The genetic distance ( ) of significant SNPs between the lowland and highland populations ranged from 0.42 to 0.58. By using correlation coefficient analysis, linkage disequilibrium, and haplotype network construction, we found three non-synonymous SNPs (R597E, T595I, and G572S) in exon 5 and two synonymous SNPs in exons 8 and 16 in These mutations significantly segregated high- and low-altitude goats in two clusters, indicating the contribution of to the high-altitude hypoxia adaptation in the Tibetan goat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6254015 | PMC |
http://dx.doi.org/10.3389/fgene.2018.00553 | DOI Listing |
Int J Mol Sci
January 2025
Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.
The Qinghai-Tibet Plateau, famously known as the "Roof of the World", has witnessed a surge in individuals traveling or working there. However, a considerable percentage of these individuals may suffer from acute mountain sickness (AMS), with high-altitude pulmonary edema (HAPE) being a severe and potentially life-threatening manifestation. HAPE disrupts the balance of intrapulmonary tissue fluid, resulting in severe lung function impairment.
View Article and Find Full Text PDFChronic exposure to high altitudes causes pathophysiological cardiac changes that are characterized by cardiac dysfunction, cardiac hypertrophy, and decreased energy reserves. However, finding specific pharmacological interventions for these pathophysiological changes is challenging. In this study, we identified tetramethylpyrazine (TMP) as a promising drug candidate for cardiac dysfunction caused by simulated high-altitude exposure.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China.
Osteoporosis, a prevalent metabolic bone disorder, is characterized by reduced bone density and increased fracture risk. The pathogenesis of osteoporosis is closely associated with an imbalance in bone remodeling, in which the resorption function of osteoclasts exceeds the formation function of osteoblasts. Hypoxia has been implicated in the promotion of osteoclast differentiation and the subsequent development of osteoporosis.
View Article and Find Full Text PDFPoult Sci
December 2024
School of Animal Science and Technology, Foshan University, Foshan 528231, PR China. Electronic address:
Tibetan chicken, an indigenous breed, inhabit highland regions and are crucial livestock for local Tibetans. Compared with other chicken breeds that have migrated from lowlands to highlands, Tibetan chicken exhibits superior physiological adaptations to high-altitude environments. However, the genetic mechanisms underlying these adaptations remain unclear.
View Article and Find Full Text PDFHigh Alt Med Biol
January 2025
Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA.
Cornwell, William, Aaron L Baggish, Christoph Dehnert, Benjamin D Levine, and Andrew M Luks. Clinical Conundrum: Climbing at the Extremes of High Elevation with Nonischemic Cardiomyopathy. 00:00-00, 2024.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!