Background: Integration of several types of therapeutic agents into one nanoplatform to enhance treatment efficacy is being more widely used for cancer therapy.

Methods: Herein, a biocompatible polydopamine (PDA)-coated MoSe-wrapped doxorubicin (DOX)-loaded hollow mesoporous silica nanoparticles (HMSNs) nanoplatform (PM@HMSNs-DOX) was fabricated for dual-sensitive drug release and chemo-photothermal therapy for enhancing the therapeutic effects on breast cancer. The HMSNs were obtained by a "structural difference-based selective etching" strategy and served as the drug carrier, exhibiting a high DOX loading capacity of 427 mg/g HMSNs-NH, and then wrapped with PDA-coated MoSe layer to form PM@HMSNs-DOX. Various techniques proved the successful fabrication of the nanocomposites.

Results: The formed PM@HMSNs-DOX nanocomposites exhibited good biocompatibility, good stability, and super-additive photothermal conversion efficiency due to the cooperation of MoSe and PDA. Simultaneously, the pH/near-infrared-responsive drug release profile was observed, which could enhance the synergistic therapeutic anticancer effect. The antitumor effects of PM@HMSNs-DOX were evaluated both in vitro and in vivo, demonstrating that the synergistic therapeutic efficacy was significantly superior to any monotherapy. Also, in vivo pharmacokinetics studies showed that PM@HMSNs-DOX had a much longer circulation time than free DOX. In addition, in vitro and in vivo toxicity studies certified that PM@HMSNs are suitable as biocompatible agents.

Conclusion: Our nanoplatform loaded with DOX displays pH/near-infrared-induced chemotherapy and excellent photothermal therapy, which hold great potential for cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6248227PMC
http://dx.doi.org/10.2147/IJN.S181681DOI Listing

Publication Analysis

Top Keywords

drug release
12
hollow mesoporous
8
mesoporous silica
8
release chemo-photothermal
8
chemo-photothermal therapy
8
synergistic therapeutic
8
vitro vivo
8
pm@hmsns-dox
5
fabricating polydopamine-coated
4
polydopamine-coated mose-wrapped
4

Similar Publications

Background: Streptococcal Toxic Shock Syndrome (STSS) is a life-threatening condition caused by bacterial toxins. The STSS triad encompasses high fever, hypotensive shock, and a "sunburn-like" rash with desquamation. STSS, like Toxic Shock Syndrome (TSS), is a rare complication of streptococcal infec-tions caused by Group A Streptococcus (GAS), Streptococcal pyogenes (S.

View Article and Find Full Text PDF

Purpose: To improve the oral absorption of relugolix (RLGL), which has low oral bioavailability due to its low solubility and being a substrate of P-glycoprotein (P-gp). A solid self-microemulsifying drug delivery system of relugolix (RLGL-S-SMEDDS) was prepared and evaluated in vitro and in vivo.

Methods: The composition of the solid self-microemulsifying drug delivery system (S-SMEDDS) was selected by solubility study and pseudo-ternary phase diagram, and further optimized by Design-Expert optimization design.

View Article and Find Full Text PDF

With the aging population, the incidence of diabetes is increasing. Diabetes often leads to restricted neovascularization, antibiotic-resistant bacterial infections, reduced wound perfusion, and elevated reactive oxygen species, resulting in impaired microenvironments and prolonged wound healing. Hydrogels are important tissue engineering materials for wound healing, known for their high water content and good biocompatibility.

View Article and Find Full Text PDF

In 2025, it will be 30 years since the initial clinical approval of pegylated liposomal doxorubicin (PLD) by the Food and Drug Administration. PLD predated the field of nanomedicine and became a model nanomedicine setting key pharmacological principles (prolonged circulation, slow drug release and the enhanced permeability and retention (EPR) effect) for clinical application of other nano-drugs in cancer therapy. The impressive reduction of cardiotoxicity conferred by PLD is the most valuable clinical asset.

View Article and Find Full Text PDF

The known species (PhP)N was previously described as two phosphine donors associated with a doubly Lewis acidic N-unit based on its thermal liberation of N. Herein, we prepare the related species [CH(PPh)(μ-N)] , where the chelation of the N fragment facilitates both N liberation and N-N bond cleavage reactions. In addition, these reactions can be achieved selectively via thermolysis of a Lewis acid adduct of or by direct photolysis, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!