Efficient injection of charge carriers from the contacts into the semiconductor layer is crucial for achieving high-performance organic devices. The potential drop necessary to accomplish this process yields a resistance associated with the contacts, namely the contact resistance. A large contact resistance can limit the operation of devices and even lead to inaccuracies in the extraction of the device parameters. Here, we demonstrate a simple and efficient strategy for reducing the contact resistance in organic thin-film transistors by more than an order of magnitude by creating high work function domains at the surface of the injecting electrodes to promote channels of enhanced injection. We find that the method is effective for both organic small molecule and polymer semiconductors, where we achieved a contact resistance as low as 200 Ωcm and device charge carrier mobilities as high as 20 cmVs, independent of the applied gate voltage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277450 | PMC |
http://dx.doi.org/10.1038/s41467-018-07388-3 | DOI Listing |
Infect Genet Evol
January 2025
Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand. Electronic address:
The growing issue of drug resistance, particularly multidrug-resistant TB (MDR-TB), has exacerbated this problem. The rise of drug resistance TB is a severe global health concern. In Thailand, a persistent community outbreak of primary MDR-TB has been confirmed in the Tha Maka district of Kanchanaburi province, with an increasing prevalence of MDR-TB among newly diagnosed pulmonary tuberculosis cases.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China. Electronic address:
Developing new conductive primers to ensure electrostatic spraying is crucial in response to the call for lightweight production of new energy vehicles. We report a stabilized material, Fe-T/G, of Fe-doped TiO composite graphene synthesized by a simple hydrothermal and electrostatic self-assembly method. The resistivity decreases from 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China. Electronic address:
Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/TCT MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Emergency Management, Nanjing Tech University, Nanjing 211816, China.
Lithium-ion batteries (LIBs) have broad application prospects in many fields because of their high energy density. However, the poor heat resistance of polyolefin membranes and uneven lithium deposition result in battery failure and even infamous thermal runaway behavior. To improve the intrinsic safety of batteries, fire-retardant, thermally conductive, electrospinning strategies are employed to acquire a functional polyacrylonitrile (PAN) nanofiber separator (PAN@FBN/TPP) containing modified boron nitride (FBN) and triphenyl phosphate (TPP).
View Article and Find Full Text PDFEpilepsia
January 2025
Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA.
Objective: The pulvinar nucleus of the thalamus has extensive cortical connections with the temporal, parietal, and occipital lobes. Deep brain stimulation (DBS) targeting the pulvinar nucleus, therefore, carries the potential for therapeutic benefit in patients with drug-resistant posterior quadrant epilepsy (PQE) and neocortical temporal lobe epilepsy (TLE). Here, we present a single-center experience of patients managed via bilateral DBS of the pulvinar nucleus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!