The role of mitochondria dynamics and its molecular regulators remains largely unknown during naïve-to-primed pluripotent cell interconversion. Here we report that mitochondrial MTCH2 is a regulator of mitochondrial fusion, essential for the naïve-to-primed interconversion of murine embryonic stem cells (ESCs). During this interconversion, wild-type ESCs elongate their mitochondria and slightly alter their glutamine utilization. In contrast, MTCH2 ESCs fail to elongate their mitochondria and to alter their metabolism, maintaining high levels of histone acetylation and expression of naïve pluripotency markers. Importantly, enforced mitochondria elongation by the pro-fusion protein Mitofusin (MFN) 2 or by a dominant negative form of the pro-fission protein dynamin-related protein (DRP) 1 is sufficient to drive the exit from naïve pluripotency of both MTCH2 and wild-type ESCs. Taken together, our data indicate that mitochondria elongation, governed by MTCH2, plays a critical role and constitutes an early driving force in the naïve-to-primed pluripotency interconversion of murine ESCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277412PMC
http://dx.doi.org/10.1038/s41467-018-07519-wDOI Listing

Publication Analysis

Top Keywords

naïve pluripotency
12
mitochondrial fusion
8
exit naïve
8
embryonic stem
8
stem cells
8
interconversion murine
8
wild-type escs
8
elongate mitochondria
8
mitochondria alter
8
mitochondria elongation
8

Similar Publications

Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.

View Article and Find Full Text PDF

Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells.

Sci China Life Sci

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.

Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages.

View Article and Find Full Text PDF

Synaptic protein expression in bipolar disorder patient-derived neurons implicates PSD-95 as a marker of lithium response.

Neuropharmacology

January 2025

Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA. Electronic address:

Bipolar disorder (BD) is a severe mental illness characterized by recurrent episodes of depression and mania. Lithium is the gold standard pharmacotherapy for BD, but outcomes are variable, and the relevant therapeutic mechanisms underlying successful treatment response remain uncertain. To identify synaptic markers of BD and lithium response, we measured the effects of lithium on induced pluripotent stem cell-derived neurons from BD patients and controls.

View Article and Find Full Text PDF

The FIRE biosensor illuminates iron regulatory protein activity and cellular iron homeostasis.

Cell Rep Methods

January 2025

Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA. Electronic address:

On Earth, iron is abundant, bioavailable, and crucial for initiating the first catalytic reactions of life from prokaryotes to plants to mammals. Iron-complexed proteins are critical to biological pathways and essential cellular functions. While it is well known that the regulation of iron is necessary for mammalian development, little is known about the timeline of how specific transcripts network and interact in response to cellular iron regulation to shape cell fate, function, and plasticity in the developing embryo and beyond.

View Article and Find Full Text PDF

Efficient differentiation of human iPSCs into Leydig-like cells capable of long-term stable secretion of testosterone.

Stem Cell Reports

January 2025

Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan; Division of Signal Pathways, Biosignal Research Center, Kobe University, Kobe, Japan. Electronic address:

Late-onset hypogonadism (LOH) syndrome is characterized by age-related testosterone deficiency and negatively affects the quality of life of older men. A promising therapeutic approach for LOH syndrome is transplantation of testosterone-producing Leydig-like cells (LLCs) derived from human induced pluripotent stem cells (hiPSCs). However, previous studies have encountered obstacles, such as limited cell longevity, insufficient testosterone production, and inefficiency of differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!