Identification of two segments of the γ subunit of ATP synthase responsible for the different affinities of the catalytic nucleotide-binding sites.

J Biol Chem

Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409 and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430. Electronic address:

Published: January 2019

ATP synthase uses a rotary mechanism to couple transmembrane proton translocation to ATP synthesis and hydrolysis, which occur at the catalytic sites in the β subunits. In the presence of Mg, the three catalytic sites of ATP synthase have vastly different affinities for nucleotides, and the position of the central γ subunit determines which site has high, medium, or low affinity. Affinity differences and their changes as rotation progresses underpin the ATP synthase catalytic mechanism. Here, we used a series of variants with up to 45- and 60-residue-long truncations of the N- and C-terminal helices of the γ subunit, respectively, to identify the segment(s) responsible for the affinity differences of the catalytic sites. We found that each helix carries an affinity-determining segment of ∼10 residues. Our findings suggest that the affinity regulation by these segments is transmitted to the catalytic sites by the DELSEED loop in the C-terminal domain of the β subunits. For the N-terminal truncation variants, presence of the affinity-determining segment and therefore emergence of a high-affinity binding site resulted in WT-like catalytic activity. At the C terminus, additional residues outside of the affinity-determining segment were required for optimal enzymatic activity. Alanine substitutions revealed that the affinity changes of the catalytic sites required no specific interactions between amino acid side chains in the γ and αβ subunits but were caused by the presence of the helices themselves. Our findings help unravel the molecular basis for the affinity changes of the catalytic sites during ATP synthase rotation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349107PMC
http://dx.doi.org/10.1074/jbc.RA118.002504DOI Listing

Publication Analysis

Top Keywords

catalytic sites
24
atp synthase
20
sites atp
12
affinity-determining segment
12
catalytic
9
affinity differences
8
affinity changes
8
changes catalytic
8
sites
7
atp
6

Similar Publications

Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.

View Article and Find Full Text PDF

Atomically Dispersed FeMo Dual Sites for Enhanced Electrocatalytic Nitrogen Reduction.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

The electrocatalytic nitrogen reduction reaction (eNRR) is an attractive strategy for the green and distributed production of ammonia (NH); however, it suffers from weak N adsorption and a high energy barrier of hydrogenation. Atomically dispersed metal dual-site catalysts with an optimized electronic structure and exceptional catalytic activity are expected to be competent for knotty hydrogenation reactions including the eNRR. Inspired by the bimetallic FeMo cofactor in biological nitrogenase, herein, an atomically dispersed FeMo dual site anchored in nitrogen-doped carbon is proposed to induce a favorable electronic structure and binding energy.

View Article and Find Full Text PDF

Group V Chitin Deacetylases Are Responsible for the Structure and Barrier Function of the Gut Peritrophic Matrix in the Chinese Oak Silkworm .

Int J Mol Sci

December 2024

Liaoning Engineering and Technology Research Center for Insect Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.

Chitin deacetylases (CDAs) are carbohydrate esterases associated with chitin metabolism and the conversion of chitin into chitosan. Studies have demonstrated that chitin deacetylation is essential for chitin organization and compactness and therefore influences the mechanical and permeability properties of chitinous structures, such as the peritrophic membrane (PM) and cuticle. In the present study, two genes ( and ) encoding CDA protein isoforms were identified and characterized in Chinese oak silkworm () larvae.

View Article and Find Full Text PDF

DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water-metal ion bridge in interacting with the GyrA subunit of DNA gyrase. Zoliflodacin sits in the same pocket as quinolones but interacts with the GyrB subunit and also stabilizes lethal double-stranded DNA breaks.

View Article and Find Full Text PDF

Based on the inhibitory potencies from earlier reported tetrazole thioether analogs, we now describe the synthesis and inhibition of pyrazole-based inhibitors of -succinyl-l,l-2,6-diaminopimelic acid desuccinylase (DapE) from (DapE). The most potent pyrazole analog bears an aminopyridine amide with an IC of 17.9 ± 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!