Gut bacteria can affect key aspects of host fitness, such as development, fecundity, and lifespan, while the host, in turn, shapes the gut microbiome. However, it is unclear to what extent individual species versus community interactions within the microbiome are linked to host fitness. Here, we combinatorially dissect the natural microbiome of and reveal that interactions between bacteria shape host fitness through life history tradeoffs. Empirically, we made germ-free flies colonized with each possible combination of the five core species of fly gut bacteria. We measured the resulting bacterial community abundances and fly fitness traits, including development, reproduction, and lifespan. The fly gut promoted bacterial diversity, which, in turn, accelerated development, reproduction, and aging: Flies that reproduced more died sooner. From these measurements, we calculated the impact of bacterial interactions on fly fitness by adapting the mathematics of genetic epistasis to the microbiome. Development and fecundity converged with higher diversity, suggesting minimal dependence on interactions. However, host lifespan and microbiome abundances were highly dependent on interactions between bacterial species. Higher-order interactions (involving three, four, and five species) occurred in 13-44% of possible cases depending on the trait, with the same interactions affecting multiple traits, a reflection of the life history tradeoff. Overall, we found these interactions were frequently context-dependent and often had the same magnitude as individual species themselves, indicating that the interactions can be as important as the individual species in gut microbiomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6304949 | PMC |
http://dx.doi.org/10.1073/pnas.1809349115 | DOI Listing |
Quant Plant Biol
December 2024
Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Trees, living for centuries, accumulate somatic mutations in their growing trunks and branches, causing genetic divergence within a single tree. Stem cell lineages in a shoot apical meristem accumulate mutations independently and diverge from each other. In plants, somatic mutations can alter the genetic composition of reproductive organs and gametes, impacting future generations.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile.
Marine microbial communities colonizing the skin of invertebrates constitute the primary barrier between host and environment, potentially exerting beneficial, neutral, or detrimental effects on host fitness. To evaluate the potential contribution of epibiotic bacteria to the survival of early developmental stages of Octopus mimus, bacterial isolates were obtained from eggs, paralarvae, and adults. Their enzymatic activities were determined, and antibacterial properties were assessed against common marine pathogens.
View Article and Find Full Text PDFBull Entomol Res
January 2025
Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan.
Parasitoids employ diverse oviposition strategies to enhance offspring survival and maximise fitness gains from hosts. Ladybird parasitoids, significant natural enemies of ladybirds, have the potential to disrupt biocontrol efforts, yet their biology and ecology remain poorly understood. This study investigated the host-parasitoid interaction among three sympatric larval endoparasitoids of (Coleoptera: Coccinellidae): (Hymenoptera: Encyrtidae), (Hymenoptera: Proctotrupidae) and (Hymenoptera: Eulophidae).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
To achieve replicative immortality, cancer cells must activate telomere maintenance mechanisms. In 10 to 15% of cancers, this is enabled by recombination-based alternative lengthening of telomeres pathways (ALT). ALT cells display several hallmarks including heterogeneous telomere length, extrachromosomal telomeric repeats, and ALT-associated PML bodies.
View Article and Find Full Text PDFViruses
December 2024
Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" (IRCCS), 00149 Rome, Italy.
Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!