Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment.

Mar Pollut Bull

Federal Maritime and Hydrographic Agency (BSH), Department of Marine Science, Section of Environmentally Hazardous Substances, Wüstland 2, DE-22589 Hamburg, Germany.

Published: November 2018

Offshore wind energy is a fast growing sector of renewable energies worldwide. This will change the marine environment and thus, a wide range of environmental impacts of offshore wind farms are subject of current research. Here we present an overview about chemical emissions from corrosion protection systems, discuss their relevance and potential impact to the marine environment, and suggest strategies to reduce their emissions. Corrosion is a general problem for offshore infrastructures and corrosion protection systems are necessary to maintain the structural integrity. These systems are often in direct contact with seawater and have different potentials for emissions, e.g. galvanic anodes emitting substantial amounts of metals. Organic coatings may release organic substances due to weathering and/or leaching. Current assumptions suggesting a low environmental impact, but monitoring data is not sufficient to assess the environmental impact of this new source.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2018.08.058DOI Listing

Publication Analysis

Top Keywords

emissions corrosion
12
corrosion protection
12
protection systems
12
offshore wind
12
marine environment
12
wind farms
8
potential impact
8
impact marine
8
environmental impact
8
emissions
4

Similar Publications

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

In recent decades, Offshore Wind Turbines (OWTs) have become crucial to the clean energy transition, yet they face significant safety challenges due to harsh marine conditions. Key issues include blade damage, material corrosion, and structural degradation, necessitating advanced materials and real-time monitoring systems for enhanced reliability. Carbon fiber has emerged as a preferred material for turbine blades due to its strength-to-weight ratio, although its high cost remains a barrier.

View Article and Find Full Text PDF

Structural design and safety performance of a novel high-strength steel lightweight guardrail.

PLoS One

January 2025

Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, China.

Highway guardrails are critical safety infrastructure along roadways, designed to redirect vehicles back into their lanes and facilitate a gradual deceleration to a complete stop. Traditional highway steel guardrails exhibit significant limitations, including inadequate energy absorption, susceptibility to corrosion, and an increased risk of vehicles leaving the roadway during severe collisions. Furthermore, the production and transportation of these guardrails contribute to substantial carbon emissions and environmental pollution.

View Article and Find Full Text PDF

Comprehensive Chlorine Suppression: Advances in Materials and System Technologies for Direct Seawater Electrolysis.

Nanomicro Lett

January 2025

State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.

Seawater electrolysis offers a promising pathway to generate green hydrogen, which is crucial for the net-zero emission targets. Indirect seawater electrolysis is severely limited by high energy demands and system complexity, while the direct seawater electrolysis bypasses pre-treatment, offering a simpler and more cost-effective solution. However, the chlorine evolution reaction and impurities in the seawater lead to severe corrosion and hinder electrolysis's efficiency.

View Article and Find Full Text PDF

Non-precious transition metal-based electrocatalysts with high activities are promising candidates for substituting Pt- or Ru-based electrocatalysts in hydrogen evolution. In this study, we propose core-shell engineering to combine the amorphous NiCoP and crystalline CoP (a-NiCoP/CoP@NF), which requires an ultra-low overpotential of only 26 mV to achieve the benchmark current density of 10 mA cm. Furthermore, it achieves an industrial-level hydrogen evolution current density of 500 mA cm with excellent stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!