Data analysis for ultra-performance liquid chromatography high-resolution mass spectrometry-based metabolomics is a challenging task. The present work provides an automatic data analysis workflow (AntDAS2) by developing three novel algorithms, as follows: (i) a density-based ion clustering algorithm is designed for extracted-ion chromatogram extraction from high-resolution mass spectrometry; (ii) a new maximal value-based peak detection method is proposed with the aid of automatic baseline correction and instrumental noise estimation; and (iii) the strategy that clusters high-resolution m/z peaks to simultaneously align multiple components by a modified dynamic programing is designed to efficiently correct time-shift problem across samples. Standard compounds and complex datasets are used to study the performance of AntDAS2. AntDAS2 is better than several state-of-the-art methods, namely, XCMS Online, Mzmine2, and MS-DIAL, to identify underlying components and improve pattern recognition capability. Meanwhile, AntDAS2 is more efficient than XCMS Online and Mzmine2. A MATLAB GUI of AntDAS2 is designed for convenient analysis and is available at the following webpage: http://software.tobaccodb.org/software/antdas2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2018.11.070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!