Production and properties of enzymes that activate and produce carbon monoxide.

Methods Enzymol

Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States. Electronic address:

Published: August 2019

The chapter focuses on the methods involved in producing and characterizing two key nickel-iron-sulfur enzymes in the Wood-Ljungdahl pathway (WLP) of anaerobic conversion of carbon dioxide fixation into acetyl-CoA: carbon monoxide dehydrogenase (CODH) and acetyl-CoA synthase (ACS). The WLP is used for biosynthesis of cell material and energy conservation by anaerobic bacteria and archaea, and it is central to several industrial biotechnology processes aimed at using syngas and waste gases for the production of fuels and chemicals. The pathway can run in reverse to allow organisms, e. g., methanogens and sulfate reducers, to grow on acetate. The CODH and ACS intertwine to form a tenacious CODH/ACS complex that converts CO, a methyl group, and coenzyme A into acetyl-CoA. CODH also behaves as a modular unit that can function as an independent homodimer. Besides coupling to ACS, CODH can interact with hydrogenases to couple CO oxidation to H formation. These enzymes have been purified and characterized from several microbes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309614PMC
http://dx.doi.org/10.1016/bs.mie.2018.10.005DOI Listing

Publication Analysis

Top Keywords

carbon monoxide
8
production properties
4
properties enzymes
4
enzymes activate
4
activate produce
4
produce carbon
4
monoxide chapter
4
chapter focuses
4
focuses methods
4
methods involved
4

Similar Publications

Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.

View Article and Find Full Text PDF

In situ remediation of oil-contaminated soils by ozonation: Experimental study and numerical modeling.

Chemosphere

January 2025

Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504, Patras, Greece. Electronic address:

The goal of the present work is to quantify the performance of ozonation as a method for the in situ remediation of soils polluted at varying degree with different types of hydrocarbons, and assess its applicability, in terms of remediation efficiency, cost factors, and environmental impacts. Ozonation tests are conducted on dry soil beds, for three specific cases: sandy soil contaminated with low, moderate and high concentration of a non-aqueous phase liquid (NAPL) consisting of equal concentrations of n-decane, n-dodecane, and n-hexadecane; sandy soil polluted with diesel fuel; oil-drilling cuttings (ODC). The transient changes of the concentration of the total organic carbon (TOC), total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), and soluble chemical oxygen demand (SCOD) in soil and carbon dioxide (CO), carbon monoxide (CO), volatile organic compounds (VOCs), and ozone (O) in exhaust gases are recorded.

View Article and Find Full Text PDF

Suppression of carbon footprint through the CO-assisted pyrolysis of livestock waste.

Sci Total Environ

January 2025

Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

Concentrated animal feeding operation facility in modern livestock industry is pointed out as a point site causing environmental pollution due to massive generation of manure. While livestock manure is conventionally treated through biological processes, composting and anaerobic digestion, these practices pose difficulties in achieving efficient carbon utilization. To address this, this study suggests a pyrolytic valorization of livestock manure, with a focus on enhancing syngas production.

View Article and Find Full Text PDF

Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).

View Article and Find Full Text PDF

Hemoglobin is an oxygen-transport protein in red blood cells that interacts with multiple ligands, e.g., oxygen, carbon dioxide, carbon monoxide, and nitric oxide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!