Background: The mosquito Aedes aegypti is the primary vector of several arboviruses, such as dengue, chikungunya and Zika, and represents a major public health problem in Southeast Asia. In Laos, where dengue is reemerging, several Ae. aegypti populations from the capital Vientiane have shown resistance to the organophosphate temephos, a commonly-used larvicide for public health interventions.

Methods: Here, we tested the insecticide susceptibility of a wild larval population of Ae. aegypti against Bacillus thuringiensis israelensis (Bti), diflubenzuron, pyriproxyfen and spinosad. Residual efficacies of Bti (VectobacWG®), diflubenzuron (Killmos®) and temephos (Abate®) were then evaluated under simulated field conditions against the wild Ae. aegypti population.

Results: The larval bioassays showed that the wild Ae. aegypti strain was moderately resistant to temephos and spinosad (resistance ratio, RR < 5) and fully susceptible to the other insecticides (RR = 1). The simulated field trial bioassays showed that all of the insecticides tested remained above the WHO acceptable larvicide threshold after 28 weeks.

Conclusions: These results suggest that Bti and diflubenzuron may be promising alternative larvicides for controlling dengue vectors in water-storage containers in Laos, especially against Ae. aegypti populations, in which resistance to temephos has been detected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6278129PMC
http://dx.doi.org/10.1186/s13071-018-3187-8DOI Listing

Publication Analysis

Top Keywords

aedes aegypti
8
public health
8
aegypti populations
8
bti diflubenzuron
8
simulated field
8
wild aegypti
8
aegypti
7
alternative insecticides
4
insecticides larval
4
larval control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!