Background: Farnesol has potential antifungal activity against Candida albicans biofilms, but the molecular mechanism of this activity is still unclear. Farnesol inhibits hyphal growth by regulating the cyclic AMP (cAMP) signalling pathway in C. albicans, and CYR1 and PDE2 regulate a pair of enzymes that are directly responsible for cAMP synthesis and degradation. Here, we hypothesize that farnesol enhances the antifungal susceptibility of C. albicans biofilms by regulating CYR1 and PDE2.
Results: The resistance of the CYR1- and PDE2-overexpressing strains to caspofungin, itraconazole and terbinafine was increased in planktonic cells, and that to amphotericin B was increased in biofilms. Meanwhile, the biofilms of the CYR1- and PDE2-overexpressing strains were thicker (all p < 0.05) and consisted of more hyphae than that of the wild strain. The intracellular cAMP levels were higher in the biofilms of the CYR1-overexpressing strain than that in the biofilms of the wild strain (all p < 0.01), while no changes were found in the PDE2-overexpressing strain. Exogenous farnesol decreased the resistance of the CYR1- and PDE2-overexpressing strains to these four antifungals, repressed the hyphal and biofilm formation of the strains, and decreased the intracellular cAMP level in the biofilms (all p < 0.05) compared to the untreated controls. In addition, farnesol decreased the expression of the gene CYR1 and the protein CYR1 in biofilms of the CYR1-overexpressing strain (all p < 0.05) but increased the expression of the gene PDE2 and the protein PDE2 in biofilms of the PDE2-overexpressing strain (all p < 0.01).
Conclusions: The results indicate that CYR1 and PDE2 regulate the resistance of C. albicans biofilms to antifungals. Farnesol suppresses the resistance of C. albicans biofilms to antifungals by regulating the expression of the gene CYR1 and PDE2, while PDE2 regulation was subordinate to CYR1 regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6278051 | PMC |
http://dx.doi.org/10.1186/s12866-018-1344-z | DOI Listing |
Front Oral Health
December 2024
Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine University of Zurich, Zurich, Switzerland.
Objectives: The increasing demand for alternatives to antibiotics against resistant bacteria has led to research on natural products. The aim of this study was to analyze the antimicrobial and antibiofilm activity of 16 Mediterranean herb extracts.
Materials And Methods: The extracts were analyzed using High Performance Thin Layer Chromatography.
J Endod
December 2024
Geriatric Dentistry Department, Faculty of Dentistry of Fluminense Federal University, Niteroi, (UFF), Niteroi, RJBrazil; Endodontics Department, Faculty of Dentistry of Fluminense Federal University (UFF), Niteroi, RJ, Brazil; Laboratory of Experimental Culture Cell (LECCel), Faculty of Dentistry of Fluminense, Federal University (UFF), Niteroi, RJ, Brazil. Electronic address:
Introduction: This study assessed a new antimicrobial paste formulation containing nitrofurantoin for regenerative endodontics against multispecies biofilms.
Methods: Four groups of 11 single-root teeth each were tested: Negative control group (BHI + microorganisms); Hoshino 1 conventional tri-antibiotic paste group (1:1:1 ratio); Hoshino 5 group (5:5:5 ratio); Experimental group with nitrofurantoin, ciprofloxacin, and metronidazole. Minimum inhibitory concentrations of each antimicrobial were determined.
J Basic Microbiol
December 2024
Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
Autophagy regulates the development of Candida albicans (C. albicans) biofilms and their sensitivity to antifungals. Atg1, a serine/threonine protein kinase, recruits autophagy-related proteins for autophagosome formation.
View Article and Find Full Text PDFInt J Med Mushrooms
December 2024
Department of Biology, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham, Thailand; Microbiology and Applied Microbiology Research Unit, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham, Thailand.
Candida albicans has the potential to turn pathogenic and cause mild to severe infections, particularly in people with weakened immune systems. Novel therapeutics are required due to its morphological alterations, biofilm development, and resistance to antifungal drugs. Polycephalomyces nipponicus, a traditional East Asian medicinal fungus, has shown potential as an antifungal agent.
View Article and Find Full Text PDFChem Biodivers
December 2024
Saveetha University - Poonamallee Campus: SIMATS Deemed University, Biochemistry, Ponnamallee, 600077, Chennai, INDIA.
The fungus Candida albicans is a prominent cariogenic fungal agent that works in association with Streptococcus mutans to accelerate the formation of oral cancer and tooth decay. This study evaluates caffeine-encapsulated titanium oxide nanoparticles (CF-TiO2 NPs) for their potential to prevent biofilm formation on teeth and enhance oral anticancer treatment by influencing apoptotic gene regulation. The synthesized CF-TiO2 NPs were characterized using UV, SEM, EDAX, and FTIR analyses, and their antioxidant activity was confirmed through free radical quenching studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!