Cycloidea-like (CYC-like) genes are the key regulatory factors in the development of flower symmetry. Duplication and/or reduction of CYC-like genes have occurred several times in various angiosperm groups and are hypothesized to be correlated with the evolution of flower symmetry, which in turn has contributed to the evolutionary success of these groups. However, less is known about the evolutionary scenario of CYC-like genes in the whole Fabales, which contains four families with either symmetric or actinomorphic flowers. Here we investigated the evolution of CYC-like genes in all the four families of Fabales and recovered one to nine CYC-like genes (CYC1, CYC2, and CYC3) depending on which lineages, but the CYC3 genes were most likely lost in the ancestor of Leguminosae. Phylogenetic analysis suggested that the CYC-like genes could have undergone multiple duplications and losses in different plant lineages and formed distinct paralogous/orthologous clades. The ancestor of the Papilionoideae and Caesalpinioideae may possess two paralogs of CYC1 genes but one of them was subsequently lost in Papilionoideae and was retained only in several species of Caesalpinioideae. CYC2 genes were more frequently duplicated in Papilionoideae than in other legumes. We propose that the diversification patterns of both CYC1 and CYC2 genes are not related to the floral symmetry in non-papilionoid Fabales groups, however, gene duplication and functional divergence of CYC2 are essential for the floral zygomorphy of Papilionoideae. This is the first systematic analysis of the CYC-like genes in Fabales and could form the basis for further study of molecular mechanisms controlling floral symmetry in non-model plants of Fabales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2018.11.007 | DOI Listing |
Plant Mol Biol
May 2024
State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
Shoot branching significantly influences yield and timber quality in woody plants, with hybrid Liriodendron being particularly valuable due to its rapid growth. However, understanding of the mechanisms governing shoot branching in hybrid Liriodendron remains limited. In this study, we systematically examined axillary bud development using morphological and anatomical approaches and selected four distinct developmental stages for an extensive transcriptome analysis.
View Article and Find Full Text PDFPlant Cell
August 2023
State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
Actinomorphic flowers usually orient vertically (relative to the horizon) and possess symmetric nectar guides, while zygomorphic flowers often face horizontally and have asymmetric nectar guides, indicating that floral symmetry, floral orientation, and nectar guide patterning are correlated. The origin of floral zygomorphy is dependent on the dorsoventrally asymmetric expression of CYCLOIDEA (CYC)-like genes. However, how horizontal orientation and asymmetric nectar guides are achieved remains poorly understood.
View Article and Find Full Text PDFCurr Issues Mol Biol
March 2023
Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
()-like genes belong to the TCP transcription factor family and play important roles associated with flower development. The -like genes in the CYC1, CYC2, and CYC3 clades resulted from gene duplication events. The CYC2 clade includes the largest number of members that are crucial regulators of floral symmetry.
View Article and Find Full Text PDFFront Plant Sci
September 2022
College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China.
Broad diversity of flowers in Fabaceae provides a good system to investigate development and evolution of floral symmetry in higher plants. Many studies have demonstrated a conserved mechanism controlling development of zygomorphic flower during last decades. However, the molecular basis of how asymmetric flower established is largely unknown.
View Article and Find Full Text PDFJ Plant Res
May 2022
School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
Gaillardia plants have been widely cultivated in China and have become an important component of garden landscaping. Different from the common ligulate ray floret, the cornflower-like (funnel-shaped) ray floret is a special phenotype variation in Gaillardia species. Previous studies revealed that CYC-like genes could shape the floret phenotype in Compositae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!