The confined and crowded environment of developing brains imposes spatial constraints on neuronal cells that have evolved individual and collective strategies to optimize their growth. These include organizing neurons into populations extending their axons to common target territories. How individual axons interact with each other within such populations to optimize innervation is currently unclear and difficult to analyze experimentally in vivo. Here, we developed a stochastic model of 3D axon growth that takes into account spatial environmental constraints, physical interactions between neighboring axons, and branch formation. This general, predictive and robust model, when fed with parameters estimated on real neurons from the Drosophila brain, enabled the study of the mechanistic principles underlying the growth of axonal populations. First, it provided a novel explanation for the diversity of growth and branching patterns observed in vivo within populations of genetically identical neurons. Second, it uncovered that axon branching could be a strategy optimizing the overall growth of axons competing with others in contexts of high axonal density. The flexibility of this framework will make it possible to investigate the rules underlying axon growth and regeneration in the context of various neuronal populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292646 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1006627 | DOI Listing |
Neuroimage
January 2025
School of information science and technology, Northwest University, Xi'an, China. Electronic address:
Macroscale neuroimaging results have revealed significant differences in the structural and functional connectivity patterns of gyri and sulci in the primate cerebral cortex. Despite these findings, understanding these differences at the molecular level has remained challenging. This study leverages a comprehensive dataset of whole-brain in situ hybridization (ISH) data from marmosets, with updates continuing through 2024, to systematically analyze cortical folding patterns.
View Article and Find Full Text PDFSci Rep
January 2025
Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
Deletion and duplication in the human 16p11.2 chromosomal region are closely linked to neurodevelopmental disorders, specifically autism spectrum disorder. Data from neuroimaging studies suggest white matter microstructure aberrations across these conditions.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Neurology, Christian-Doppler University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria.
Intrathecal immunoglobulin A (IgA) synthesis in multiple sclerosis (MS) has long earned little attention, despite a potential significance in disease pathogenesis and prognosis. The presence of IgA-positive plasma cells in MS lesions and along damaged axons suggests a role in disease pathogenesis. Available clinical evidence about a potential positive or negative prognostic role is scarce and inconclusive.
View Article and Find Full Text PDFASN Neuro
January 2025
Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
In light of the increasing importance for measuring myelin ratios - the ratio of axon-to-fiber (axon + myelin) diameters in myelin internodes - to understand normal physiology, disease states, repair mechanisms and myelin plasticity, there is urgent need to minimize processing and statistical artifacts in current methodologies. Many contemporary studies fall prey to a variety of artifacts, reducing study outcome robustness and slowing development of novel therapeutics. Underlying causes stem from a lack of understanding of the myelin ratio, which has persisted more than a century.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!