We describe here a protocol for the label-free identification of lymphocyte subtypes using quantitative phase imaging and machine learning. Identification of lymphocyte subtypes is important for the study of immunology as well as diagnosis and treatment of various diseases. Currently, standard methods for classifying lymphocyte types rely on labeling specific membrane proteins via antigen-antibody reactions. However, these labeling techniques carry the potential risks of altering cellular functions. The protocol described here overcomes these challenges by exploiting intrinsic optical contrasts measured by 3D quantitative phase imaging and a machine learning algorithm. Measurement of 3D refractive index (RI) tomograms of lymphocytes provides quantitative information about 3D morphology and phenotypes of individual cells. The biophysical parameters extracted from the measured 3D RI tomograms are then quantitatively analyzed with a machine learning algorithm, enabling label-free identification of lymphocyte types at a single-cell level. We measure the 3D RI tomograms of B, CD4+ T, and CD8+ T lymphocytes and identified their cell types with over 80% accuracy. In this protocol, we describe the detailed steps for lymphocyte isolation, 3D quantitative phase imaging, and machine learning for identifying lymphocyte types.

Download full-text PDF

Source
http://dx.doi.org/10.3791/58305DOI Listing

Publication Analysis

Top Keywords

machine learning
20
identification lymphocyte
16
quantitative phase
16
phase imaging
16
imaging machine
16
label-free identification
12
lymphocyte subtypes
12
lymphocyte types
12
learning algorithm
8
lymphocyte
7

Similar Publications

Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.

Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.

View Article and Find Full Text PDF

Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.

View Article and Find Full Text PDF

In this paper, we propose a method to address the class imbalance learning in the classification of focal liver lesions (FLLs) from abdominal CT images. Class imbalance is a significant challenge in medical image analysis, making it difficult for machine learning models to learn to classify them accurately. To overcome this, we propose a class-wise combination of mixture-based data augmentation (CCDA) method that uses two mixture-based data augmentation techniques, MixUp and AugMix.

View Article and Find Full Text PDF

Effect of terahertz radiation on cells and cellular structures.

Front Optoelectron

January 2025

Institute of Physics, Saratov State University, Saratov, 410012, Russia.

The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!