Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Compressive spectral imagers reduce the number of sampled pixels by coding and combining the spectral information. However, sampling compressed information with simultaneous high spatial and high spectral resolution demands expensive high-resolution sensors. This work introduces a model allowing data from high spatial/low spectral and low spatial/high spectral resolution compressive sensors to be fused. Based on this model, the compressive fusion process is formulated as an inverse problem that minimizes an objective function defined as the sum of a quadratic data fidelity term and smoothness and sparsity regularization penalties. The parameters of the different sensors are optimized and the choice of an appropriate regularization is studied in order to improve the quality of the high resolution reconstructed images. Simulation results conducted on synthetic and real data, with different CS imagers, allow the quality of the proposed fusion method to be appreciated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2018.2884081 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!