Anisotropic Biomimetic Silk Scaffolds for Improved Cell Migration and Healing of Skin Wounds.

ACS Appl Mater Interfaces

Department of Biomedical Engineering , Tufts University, Medford , Massachusetts 02155 , United States.

Published: December 2018

Improved and more rapid healing of full-thickness skin wounds remains a major clinical need. Silk fibroin (SF) is a natural protein biomaterial that has been used in skin repair. However, there has been little effort aimed at improving skin healing through tuning the hierarchical microstructure of SF-based matrices and introducing multiple physical cues. Recently, enhanced vascularization was achieved with SF scaffolds with nanofibrous structures and tunable secondary conformation of the matrices. We hypothesized that anisotropic features in nanofibrous SF scaffolds would promote cell migration, neovascularization, and tissue regeneration in wounds. To address this hypothesis, SF nanofibers were aligned in an electric field to form anisotropic porous scaffolds after lyophilization. In vitro and in vivo studies indicated good cytocompatibility, and improved cell migration and vascularization than nanofibrous scaffolds without these anisotropic features. These improvements resulted in more rapid wound closure, tissue ingrowth, and the formation of new epidermis, as well as higher collagen deposition with a structure similar to the surrounding native tissue. The new epidermal layers and neovascularization were achieved by day 7, with wound healing complete by day 28. It was concluded that anisotropic SF scaffolds alone, without a need for growth factors and cells, promoted significant cell migration, vascularization, and skin regeneration and may have the potential to effectively treat dermal wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b18626DOI Listing

Publication Analysis

Top Keywords

cell migration
16
improved cell
8
skin wounds
8
anisotropic features
8
nanofibrous scaffolds
8
migration vascularization
8
scaffolds
6
anisotropic
5
skin
5
anisotropic biomimetic
4

Similar Publications

Parkinson's disease (PD), a neurodegenerative disorder without cure, is characterized by the pathological aggregation of α-synuclein (α-Syn) in Lewy bodies. Classic deposition pathway and condensation pathway contribute to α-Syn aggregation, and liquid-liquid phase separation is the driving force for condensate formation, which subsequently undergo liquid-solid phase separation to form toxic fibrils. Traditional Chinese Medicine (TCM) has a long history in treating neurodegenerative disease, herein; we identified chemicals from herbs that inhibit α-Syn aggregation.

View Article and Find Full Text PDF

Subsets of extraocular motoneurons produce kinematically distinct saccades during hunting and exploration.

Curr Biol

January 2025

Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK. Electronic address:

Animals construct diverse behavioral repertoires by moving a limited number of body parts with varied kinematics and patterns of coordination. There is evidence that distinct movements can be generated by changes in activity dynamics within a common pool of motoneurons or by selectively engaging specific subsets of motoneurons in a task-dependent manner. However, in most cases, we have an incomplete understanding of the patterns of motoneuron activity that generate distinct actions and of how upstream premotor circuits select and assemble such motor programs.

View Article and Find Full Text PDF

Dual effect of targeting LSD1 on the invasiveness and the mechanical response of acute lymphoblastic leukemia cells.

Biomed Pharmacother

January 2025

Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain. Electronic address:

Epigenetic alterations are hallmarks of cancer, with histone modifiers playing critical roles in gene transcription, DNA homeostasis, and other nuclear functions. Lysine-specific demethylase 1 (LSD1), a key regulator of H3K4 methylation, has emerged as a promising pharmacological target in cancer treatment, including leukemia. Acute lymphoblastic leukemia (ALL), the most common pediatric cancer, remains a significant therapeutic challenge due to limited understanding of how epigenetic therapy impacts leukemia dissemination.

View Article and Find Full Text PDF

We study the influence of electrical biasing on the modification of the chemical composition and electrical performance of perovskite solar cells (PSCs) by coupling electrochemical impedance spectroscopy (EIS) and scanning transmission X-ray microscopy (STXM) techniques. EIS reveals the formation of charge accumulation at the interfaces and changes in the resistive and capacitive properties. STXM study on PSCs after applying a strong electric field for a long biasing time indicates the breakdown of methylammonium (MA) cation, promoting iodide ions to migrate and create defects at the interface.

View Article and Find Full Text PDF

We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!