Characterized by a fluid and deformable interface, ligand-functionalized emulsion droplets are used as model probes to address biophysical, biological, and developmental questions. Functionalization protocols usually rely on the use of headgroup-modified phospholipids that are dissolved in the oil phase prior to emulsification, leading to a broad range of surface densities within a given droplet population. With the aim to coat particles homogeneously with biologically relevant lipids and proteins (streptavidin, immunoglobulins, etc.), we developed a reliable surface decoration protocol based on the use of polar cosolvents to dissolve the lipids in the aqueous phase after the droplet production. We show that the surface density of the lipids at the interface has a narrow normal distribution for droplets having the same size. We performed titration isotherms for lipids and biologically relevant proteins on these drops. Then, we studied the influence of the presence of surfactants in the medium on lipid insertion and compared the results for a range of polar cosolvents of increasing polarity. To assess both the generality and the biocompatibility of the method, we show that we can produce more sophisticated, monodisperse functional magnetic emulsions with a very high surface homogeneity. Using an oil denser than the surrounding culture medium, we show that IgG-coated droplets can be used as probes for phagocytosis experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b02721 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!