Ion mobility-mass spectrometry (IM-MS) allows the separation of isomeric and isobaric species on the basis of their size, shape, and charge. The fast separation timescale (ms) and high sensitivity of these measurements make IM-MS an ideally suitable method for monitoring changes in macromolecular structure, such as those occurring in interconverting terpyridine-based metallosupramolecular self-assemblies. IM-MS is used to verify the elemental composition (size) and architecture (shape) of the self-assembled products. Additionally, this article demonstrates its applicability to the elucidation of concentration-driven association-dissociation (fusion-fission) equilibria between isobaric structures. IM-MS enables both quantitative separation and identification of the interconverting complexes as well as derivation of the corresponding equilibrium constants (i.e., thermodynamic information) from extracted IM-MS abundance data.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201800667DOI Listing

Publication Analysis

Top Keywords

ion mobility-mass
8
mobility-mass spectrometry
8
im-ms
5
monitoring metallo-macromolecular
4
metallo-macromolecular assembly
4
assembly equilibria
4
equilibria ion
4
spectrometry ion
4
spectrometry im-ms
4
im-ms allows
4

Similar Publications

We report the first implementation of ion mobility mass spectrometry combined with an ultra-high throughput sample introduction technology for high throughput screening (HTS). The system integrates differential ion mobility (DMS) with acoustic ejection mass spectrometry (AEMS), termed DAEMS, enabling the simultaneous quantitation of structural isomers that are the sub-strates and products of isomerase mediated reactions in intermediary metabolism. We demonstrate this potential by comparing DAEMS to a luminescence assay for the isoform of phosphoglycerate mutase (iPGM) distinctively present in pathogens offering an opportunity as a drug target for a variety of microbial and parasite borne diseases.

View Article and Find Full Text PDF

"Liquid gold" has been traditionally used for over a century to decorate ceramicware, but its chemical composition has not been thoroughly investigated. One of the keys to successfully characterizing liquid gold, which is a complex mixture, is to distinguish Au-containing products from other chemicals. In this paper, we propose a separation based on the difference in collision cross section, of which chemicals with heavy atoms are relatively smaller than those without in ion mobility-mass spectrometry (IM-MS).

View Article and Find Full Text PDF

Most conventional methods used to measure protein melting temperatures reflect changes in structure between different conformational states and are typically fit to a two-state model. Population abundances of distinct conformations were measured using variable-temperature electrospray ionization ion mobility mass spectrometry to investigate the thermally induced unfolding of the model protein cytochrome . Nineteen conformers formed at high temperature have elongated structures, consistent with unfolded forms of this protein.

View Article and Find Full Text PDF

Targeted metabolomics and lipidomics are increasingly utilized in clinical research, providing quantitative and comprehensive assessments of metabolic profiles that underlie physiological and pathological mechanisms. These approaches enable the identification of critical metabolites and metabolic alterations essential for accurate diagnosis and precision treatment. Mass spectrometry, in combination with various separation techniques, offers a highly sensitive and specific platform for implementing targeted metabolomics and lipidomics in clinical settings.

View Article and Find Full Text PDF

Selective Reduction of Esters to Access Aldehydes Using Fiddler Crab-Type Boranes.

J Am Chem Soc

January 2025

Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary.

The partial reduction of esters to aldehydes is a fundamentally important transformation for the synthesis of numerous fine chemicals and consumer goods. However, despite the many efforts, limitations have persisted, such as competing overreduction, low reproducibility, use of exigent reaction conditions and hazardous chemicals. Here, we report a novel catalyst family with a unique steric design which promotes the catalytic partial reduction of esters with unprecedented, near-perfect selectivity and efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!