A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diet and diet-associated bacteria shape early microbiome development in Yellowtail Kingfish (Seriola lalandi). | LitMetric

The supply of quality juveniles via land-based larviculture represents a major bottleneck to the growing finfish aquaculture industry. As the microbiome plays a key role in animal health, this study aimed to assess the microbial community associated with early larval development of commercially raised Yellowtail Kingfish (Seriola lalandi). We used qPCR and 16S rRNA gene amplicon sequencing to monitor changes in the microbiome associated with the development of S. lalandi from larvae to juveniles. We observed an increase in the bacterial load during larval development, which consisted of a small but abundant core microbiota including taxa belonging to the families Rhodobacteraceae, Lactobacillaceae and Vibrionaceae. The greatest change in the microbiome occurred as larvae moved from a diet of live feeds to formulated pellets, characterized by a transition from Proteobacteria to Firmicutes as the dominant phylum. A prediction of bacterial gene functions found lipid metabolism and secondary metabolite production were abundant in the early larval stages, with carbohydrate and thiamine metabolism functions increasing in abundance as the larvae age and are fed formulated diets. Together, these results suggest that diet is a major contributor to the early microbiome development of commercially raised S. lalandi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389859PMC
http://dx.doi.org/10.1111/1751-7915.13323DOI Listing

Publication Analysis

Top Keywords

early microbiome
8
microbiome development
8
yellowtail kingfish
8
kingfish seriola
8
seriola lalandi
8
early larval
8
larval development
8
development commercially
8
commercially raised
8
microbiome
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!