We found two subunits FTase/GGTaseI-α and FTase-β formed a heterodimer to transfer a farnesyl group from FPP to protein N-dansyl-GCVLS, confirming they are responsible for protein farnesylation in planta. Tripterygium wilfordii is a medicinal plant with a broad spectrum of anti-inflammatory, immunosuppressive and anti-cancer activities. Recently, a number of studies have focused on investigating the biosynthetic pathways of its bioactive compounds, whereas little attention has been paid to the enzymes which play important roles in regulating diverse developmental processes of T. wilfordii. In this study, we report for the first time the identification and characterization of two subunits of farnesyltransferase (FTase), farnesyltransferase/geranylgeranyltransferase I-α (TwFTase/GGTase I-α) and farnesyltransferase-β (TwFTase-β), in this important medicinal plant. Cell-free in vivo assays, yeast two-hybrid (Y2H) and pull-down assays showed that the two subunits interact with each other to form a heterodimer to perform the role of specifically transferring a farnesyl group from FPP to the CAAX-box protein N-dansyl-GCVLS. Furthermore, we discovered that the two subunits had the same cytoplasmic localization pattern and displayed the same tissue expression pattern. These results indicated that we identified a functional TwFTase enzyme which contains two functionally complementary subunits TwFTase/GGTase I-α and TwFTase-β, which provides us promising genetic targets to construct transgenic plants or screen for more adaptable T. wilfordii mutants, which are able to survive in changing environments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-018-2363-9DOI Listing

Publication Analysis

Top Keywords

tripterygium wilfordii
8
farnesyl group
8
group fpp
8
protein n-dansyl-gcvls
8
medicinal plant
8
twftase/ggtase i-α
8
subunits
5
probing function
4
protein
4
function protein
4

Similar Publications

Concoctive principles of detoxification and retention of the main toxic hepatotoxicity of Tripterygium wilfordii and its anti-inflammatory efficacy by concocting with the medicinal excipient Spatholobi Caulis juice.

Fitoterapia

January 2025

College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Medicine, Zhengzhou 450046, China. Electronic address:

Tripterygium wilfordii (TW), which has severe hepatotoxicity, is commonly used as anti-rheumatism. Using the juice of auxiliary herbs in concocting poisonous herbs is a conventional method for toxicity reduction or efficacy enhancement. Traditional Chinese Pharmacy textbooks record that Spatholobi Caulis (SC) can alleviate the side effects caused by TW and also possesses excellent hepatoprotective effect.

View Article and Find Full Text PDF

The role of celastrol in inflammation and diseases.

Inflamm Res

January 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.

Celastrol is one of the main active ingredients extracted from the plant Tripterygium wilfordii Hook F. A growing number of studies have shown that celastrol has various pharmacological effects, including anti-inflammation, anti-rheumatism, treatment of neurodegenerative diseases, and anti-tumor. This article systematically summarized the mechanism and role of celastrol in lipid metabolism and obesity, rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis, inflammatory bowel disease, neurodegenerative diseases, and cancer and other diseases (such as diabetes, respiratory-related diseases, atherosclerosis, psoriasis, hearing loss, etc.

View Article and Find Full Text PDF

Pharmacological, computational, and mechanistic insights into triptolide's role in targeting drug-resistant cancers.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia.

As a promising candidate for tackling drug-resistant cancers, triptolide, a diterpenoid derived from the Chinese medicinal plant Tripterygium wilfordii, has been developed. This review summarizes potential antitumor activities, including the suppression of RNA polymerase II, the suppression of heat shock proteins (HSP70 and HSP90), and the blockade of NF-kB signalling. Triptolide is the first known compound to target cancer cells specifically but spare normal cells, and it has success in treating cancers that are difficult to treat, including pancreatic, breast, and lung cancers.

View Article and Find Full Text PDF

Tripterygium glycosides (TGs) are the most common form of traditional Chinese medicine, known as Tripterygium wilfordii Hook F (TWHF) [...

View Article and Find Full Text PDF

Background And Objective: Total glucosides of paeony (TGP) capsules, tripterygium glycoside tablets (TGT), and celecoxib are commonly used drugs in clinical practice for the treatment of Rheumatoid arthritis (RA). An UPLC-MS/MS method for the analysis of celecoxib in beagle dogs was developed, the herb-drug interactions (HDIs) between TGP and TGT with celecoxib were studied based on pharmacokinetics.

Methods: The method of acetonitrile precipitation was applied to process plasma samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!